بررسی همبستگی کوانتومی در سیستمهای بسذره ای فرمیونی
First Statement of Responsibility
/فقیهه اقبالی فام
.PUBLICATION, DISTRIBUTION, ETC
Name of Publisher, Distributor, etc.
: فیزیک
Date of Publication, Distribution, etc.
، ۱۳۹۶
Name of Manufacturer
، راشدی
NOTES PERTAINING TO PUBLICATION, DISTRIBUTION, ETC.
Text of Note
چاپی
DISSERTATION (THESIS) NOTE
Dissertation or thesis details and type of degree
دکتری
Discipline of degree
فیزیک
Date of degree
۱۳۹۶/۰۶/۲۰
Body granting the degree
تبریز
SUMMARY OR ABSTRACT
Text of Note
درهمصتنیدگی کوانتومی، سنجهصی درهمصتنیدگی، حالاتGHZ ، شبکهصی اسپینی، مدل هوبارد، شمای همبسته، شبکهصی وزنیSU(N) ، شبکهصهای اسپینی اتلافی، معادلهصی لیندبلاد چکیده درهمصتنیدگی استعداد بالقوهصی حالات کوانتومی است که در حالت کلاسیکی وجود ندارد، طی دههصها درهمصتنیدگی موضوع اصلی مکانیک کوانتومی به ویژه در ارتباط با جداییصناپذیری کوانتومی و نقض نامساوی بل بود .به عنوان مثال قابلیت پیشصبینیصشدهصی کامپیوترهای کوانتومی بر درهمصتنیدگی تکیه دارد .دریک سیستم اسپینی درهمصتنیدگی مابین اسپینصها نقشی اساسی در انتقال بهینهصی اطلاعات کوانتومی دارد .یکی از مدلصهای رایج فیزیکی مدل هوبارد است که یک مدل تقریبی مورد استفاده در فیزیک حالت جامد است تا گذار بین سیستمصهای عایق و رسانا را شرح دهد .در این پایانصنامه در ابتدا با در نظر گرفتن هامیلتونین مدل هوبارد و صرف نظر کردن از جملهصی اندرکنشی آن، ایجاد بهینهصی درهمصتنیدگی در شبکهصهای شمای همبستهصی گروهی بررسی شده است .همچنین تولید درهمصتنیدگی بهینه با استفاده از این هامیلتونین در شبکهصهای وزنی گروه SU(N) مطالعه شده است .در مرحلهصی بعدی، یک حالت اولیه۲m -کیوبیتی در نظر گرفته شده و بعد از تحول زمانی آن، با مطالعهصی شبکهصهای اسپینی منظم فاصله و خصوصیات گراف جانسون، حالتی با بیشینهصی درهم-تنیدگی) حالت GHZ) در حالت نهایی ایجاد میصشود .در پایان شبکهصهای اسپینی اتلافی مورد مطالعه قرار گرفته و با حل معادلهصی لیندبلاد برای یک گراف مربعی میزان درهمصتنیدگی بر حسب ضریب اتلاف داده شده است
Text of Note
Entanglement is one of the most important features of quantum mechanics. It explains non-local correlations between quantum objects, and is at the heart of quantum information processing. So the study of entanglement has been a main field of research in the last years. The entanglement of a partly entangled pure state can be measured by its entropy of entanglement, defined as the Von Neumann entropy. In this thesis, first the entanglement entropy is investigated in the ground state of a spinless free fermion Hamiltonian. For the both cases of the pure and mixed ground state, the analytical formula for entanglement entropy are given in the complete graph and three scalable sets of strongly regular graphs by using the eigenvalues of correlation matrix. In the case of mixed ground state the method of calculating the entanglement entropy is given for association scheme graphs and the mutual information is calculated for mentioned examples and volume law scaling is investigated in them. In the next step, the general spinless fermion Hamiltonian with quadratic interactions is considered that its interaction matrix is given by the symmetric and antisymmetric parts of the adjacency matrix of a directed graph. The entanglement entropy is calculated for nonsymmetric association scheme graphs such as directed cycle graph and Normally regular digraph. Then it has been shown that there is the volume law scaling for both examples. Also the entanglement entropy is studied for spinless fermions in the ground state of a supersymmetric Hamiltonian on various graphs. The analytical formula is given for the entanglement entropy in one scalable set of strongly regular graphs (SRG) in terms of their parameters. We show that there is the volume law scaling in the entropy for the most cases of the regular graphs. In the all mentioned models, the entanglement entropy is used as a tool in detecting non-isomorphic pairs of SRGs and other non-isomorphic graphs. Strongly regular graphs are a set of graphs with high symmetry and they can be detected difficulty by classical and quantum algorithms. Then the Fermi gas model is studied and it is proven that the Fermi gas density matrix is block diagonal in the basis of the projection operators to the irreducible representations of symmetric group Sn. Every block of density matrix is in the form of the direct product of a matrix and identity matrix. The polynomial entanglement measure of degree-2 is zero for even N qubit Fermi gas density matrix. It has been shown that tangle is zero for three qubit Fermi gas density matrix, but the density matrix is not biseparable for all possible values of its parameters and its eigenvectors are in the form of W-states. Then an entanglement witness for detecting non-separable state and an entanglement witness for detecting non-biseparable states have been introduced for three qubit density matrix by using convex optimization problem. Finally the four spin reduced density matrix has been investigated and it has been shown that some highly entangled classes don't exist in the Fermi gas density matrix. Finally the graph isomorphism problem is investigated in cospectral graphs By using multiparticle quantum walk. In this case the multiparticle fermionic basis is used to reduce the complexities of the calculations. These fermionic bases are in a form that the adjacency matrices in these bases will be 8*8 for all amounts of n. Then it has been shown that the multiparticle quantum walk is able to distinguish pairs of non-isomorph graphs