A Qualitative Approach to Inverse Scattering Theor
General Material Designation
[Book]
First Statement of Responsibility
/ electronic resource
.PUBLICATION, DISTRIBUTION, ETC
Place of Publication, Distribution, etc.
Boston, MA
Name of Publisher, Distributor, etc.
: Springer US :Imprint: Springer,
Date of Publication, Distribution, etc.
, 2014.
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
X, 297 s. 15 illus. , online resource..
SERIES
Series Title
(Applied Mathematical Sciences
Volume Designation
; 188,0066-5452)
GENERAL NOTES
Text of Note
9781461488262.
NOTES PERTAINING TO PUBLICATION, DISTRIBUTION, ETC.
Text of Note
Electronic
CONTENTS NOTE
Text of Note
Summary: Inverse scattering theory is an important area of applied mathematics due to its central role in such areas as medical imaging , nondestructive testing and geophysical exploration. Until recently all existing algorithms for solving inverse scattering problems were based on using either a weak scattering assumption or on the use of nonlinear optimization techniques. The limitations of these methods have led in recent years to an alternative approach to the inverse scattering problem which avoids the incorrect model assumptions inherent in the use of weak scattering approximations as well as the strong a priori information needed in order to implement nonlinear optimization techniques. These new methods come under the general title of qualitative methods in inverse scattering theory and seek to determine an approximation to the shape of the scattering object as well as estimates on its material properties without making any weak scattering assumption and using essentially no a priori information on the nature of the scattering object. This book is designed to be an introduction to this new approach in inverse scattering theory focusing on the use of sampling methods and transmission eigenvalues. In order to aid the reader coming from a discipline outside of mathematics we have included background material on functional analysis, Sobolev spaces, the theory of ill posed problems and certain topics in in the theory of entire functions of a complex variable. This book is an updated and expanded version of an earlier book by the authors published by Springer titled Qualitative Methods in Inverse Scattering Theory Review of Qualitative Methods in Inverse Scattering Theory All in all, the authors do exceptionally well in combining such a wide variety of mathematical material and in presenting it in a well-organized and easy-to-follow fashion. This text certainly complements the growing body of work in inverse scattering and should well suit both new researchers to the field as well as those who could benefit from such a nice codified collection of profitable results combined in one bound volume. SIAM Review, 2006.
Text of Note
1. Functional Analysis and Sobolev Spaces -- 2. Ill-Posed Problems -- 3. Scattering by Imperfect Conductors -- 4. Inverse Scattering Problems for Imperfect Conductors -- 5. Scattering by Orthotropic Media -- 6. Inverse Scattering Problems for Orthotropic Media -- 7. Factorization Methods -- 8. Mixed Boundary Value Problems -- 9. Inverse Spectral Problems for Transmission Eigenvalues -- 10. A Glimpse at Maxwell's Equations.
SERIES
Title
Applied Mathematical Sciences ;188,0066-5452
TOPICAL NAME USED AS SUBJECT
Mathematics
Fourier analysis
Differential equations, partial
Computer engineering
Mathematics
Partial Differential Equations
Electrical Engineering
Theoretical, Mathematical and Computational Physics