NOTES PERTAINING TO PUBLICATION, DISTRIBUTION, ETC.
Text of Note
Electronic
INTERNAL BIBLIOGRAPHIES/INDEXES NOTE
Text of Note
Includes bibliographical references (p. 213-214) and index.
CONTENTS NOTE
Text of Note
Preface -- 1. Straightedge and compass -- 1.1. Euclid's construction axioms -- 1.2. Euclid's construction of the equilateral triangle -- 1.3. Some basic constructions -- 1.4. Multiplication and division-- 1.5. Similar triangles -- 1.6. Discussion -- 2. Euclid's approach to geometry -- 2.1. The parallel axiom -- 2.2. Congruence axioms -- 2.3. Area and equality -- 2.4. Area of parallelograms and triangles -- 2.5. The Pythagorean theorem -- 2.6. Proof of the Thales theorem -- 2.7. Angles in a circle -- 2.8. The Pythagorean theorem revisited -- 2.9. Discussion -- 3. Coordinates -- 3.1. The number line and the number plane -- 3.2. Lines and their equations -- 3.3. Distance -- 3.4. Intersections of lines and circles -- 3.5. Angle and slope -- 3.6. Isometries -- 3.7. The three reflections theorem -- 3.8. Discussion -- 4. Vectors and euclidean spaces -- 4.1. Vectors -- 4.2. Direction and linear independence -- 4.3. Midpoints and centroids -- 4.4. The inner product -- 4.5. Inner product and cosine -- 4.6. The triangle inequality -- 4.7. Rotations, matrices, and complex numbers -- 4.8. Discussion --
Text of Note
5. Perspective -- 6.1. Perspective drawing -- 5.2. Drawing with straightedge alone -- 5.3. Projective plane axioms and their models -- 5.4. Homogeneous coordinates -- 5.5. Projection -- 5.6. Linear fractional functions -- 5.7. The cross-ratio -- 5.8. What is special about the cross-ratio? -- 5.9. Discussion -- 6. Projective planes -- 6.1. Pappus and Desargues revisited -- 6.2. Coincidences -- 6.3. Variations on the Desargues theorem -- 6.4. Projective arithmetic -- 6.5. The field axioms -- 6.6. The associative laws -- 6.7. The distributive law -- 6.8. Discussion -- 7. Transformations -- 7.1. The group of isometries of the plane -- 7.2. Vector transformations -- 7.3. Transformations of the projective line -- 7.4. Spherical geometry -- 7.5. The rotation group of the sphere -- 7.6. Representing space rotations by quaternions -- 7.7. A finite group of space rotations -- 7.8. The group SooAلآ and RPooAلآ -- 7.9. Discussion -- 8. Non-Euclidean geometry -- 8.1. Extending the projective line to a plane -- 8.2. Complex conjugation -- 8.3. Reflections and Mobius transformations -- 8.4. Preserving non-Euclidean lines -- 8.5. Preserving angle -- 8.6. Non-Euclidean distance -- 8.7. Non-Euclidean translations and rotations -- 8.8. Three reflections or two involutions -- 8.9. Discussion -- References -- Index.