NOTES PERTAINING TO PUBLICATION, DISTRIBUTION, ETC.
Text of Note
Print
INTERNAL BIBLIOGRAPHIES/INDEXES NOTE
Text of Note
Includes bibliographical references and index.
CONTENTS NOTE
Text of Note
Note continued:C.3.1.Non-Interacting Electrons --C.3.2.Phonons --D.Dielectric Function, E(k, ω): Formulas and Uses --D.1.Uses --D.2.Expressions for E(k, ω) within the JM --D.3.Phenomenological Expressions for the Dielectric Function --E.Waves in Continuous Elastic Media --E.1.Strains --E.2.Equations of Motion --E.3.Connecting Stress and Strain --E.4.Elastic Wave Equation --F.Method LCAO Applied to Molecules --F.1.Formulation of the LCAO Method --F.2.Some Important Examples --F.2.1.Covalent Diatomic Molecule --F.2.2.Ionic Diatomic Molecule --F.3.Hybridization of Atomic Orbitals --F.3.1.sp1 Hybrid Atomic Orbitals --F.3.2.sp2 Hybrid Atomic Orbitals --F.3.3.sp3 Hybrid Atomic Orbitals --G.Boltzmann's Equation --H.Tables.
Text of Note
Note continued:22.2.3.Critical Value of the Magnetic Field Beyond Which Superconductivity Disappears --22.2.4.Specific Heat and Other Thermodynamic Quantities --22.2.5.Response to Microwave or Far Infrared EM Radiation --22.2.6.Ultrasound Attenuation --22.2.7.Tunneling Current in Metal/Insulator/Superconductor Junctions --22.2.8.Temperature Dependence of the Superconduting Gap --22.2.9.Isotope Effect --22.2.10.Relaxation Times for Nuclear Spin --22.2.11.Thermoelectric Coefficients --22.3.Thermodynamic Relations --22.4.London Equation --22.5.Pippard's Generalization --22.6.Ginzburg-Landau Theory --22.7.Quantization of the Magnetic Flux --22.8.Key Points --22.9.Problems --23.Superconductivity, II: Microscopic Theory --23.1.Electron-Electron Indirect Attraction --23.2.Cooper Pairs --23.3.Comments --23.4.Corrected Binding Energy and the Critical Temperature --23.5.Further Corrections to the Formula for Tc --23.6.Bardeen-Cooper-Schrieffer (BCS) Theory --23.7.Thermodynamic Quantities --23.8.Response to Electromagnetic Fields --23.9.Towards Material-Specific Calculations of Superconducting Quantities --23.10.Josephson Effects and SQUID --23.11.Key Points --23.12.Problems --pt. VIIAppendices --A.Elements of Electrodynamics of Continuous Media --A.1.Field Vectors, Potentials, and Maxwell's Equations --A.2.Relations Among the Fields --B.Elements of Quantum Mechanics --B.1.General Formalism --B.2.Bra and Ket Notation --B.3.Spherically Symmetric Potentials --B.4.Perturbation Results --B.5.Interaction of Matter with an External Electromagnetic Field --C.Elements of Thermodynamics and Statistical Mechanics --C.1.Thermodynamic Relations --C.2.Basic Relations of Statistical Mechanics --C.3.Non-Interacting Particles --
Text of Note
Note continued:20.1.Which Property Characterizes These Materials? --20.2.Experimental Data for Ferromagnets --20.2.1.Saturation Magnetization vs Temperature for Simple Ferromagnets --20.2.2.Magnetic Susceptibility of Simple Ferromagnet for T > Te --20.2.3.Saturation Magnetization vs Temperature for Ferrimagnets --20.2.4.Magnetic Susceptibility of Ferrimagnets vs Temperature (T > Tc) --20.3.Experimental Data for Antiferromagnets --20.3.1.Determination of the Antiferromagnetic Ordered Structure --20.3.2.Magnetic Susceptibility vs Temperature --20.4.Materials --20.4.1.Simple Ferromagnetic Materials --20.4.2.Ferrimagnetic Materials --20.4.3.Antiferromagnetic Materials --20.5.Thermodynamic Relations --20.5.1.Thermodynamic Potentials --20.5.2.Mean Field Approximation (Landau's Approach) --20.5.3.Why are Magnetic Domains Formed? --20.5.4.How Thick is the Bloch Wall? --20.5.5.Examples of Magnetic Domains --20.5.6.Thermodynamics of Antiferrmagnets --20.6.Spintronics --20.7.Key Points --20.8.Problems --21.Magnetic Materials II: Microscopic View --21.1.Introduction --21.2.Jellium model and el-el Coulomb Repulsion --21.2.1.Is There Ferromagnetic Order in the JM? --21.2.2.Magnetic Susceptibility Within the JM in the Presence of Electron-Electron Interactions --21.2.3.Is There Antiferromagnetic Order in the JM? --21.3.Hubbard Model --21.4.Heisenberg Model --21.4.1.Hamiltonian --21.4.2.Mean Field Approximation --21.4.3.Ferromagnetic Case, (Jij > 0) and its spin waves --21.4.4.AF Case --21.5.Key Points --21.6.Problems --22.Superconductivity, I: Phenomenology --22.1.Materials --22.2.Properties of Superconductors --22.2.1.Zero DC Resistivity --22.2.2.Expulsion of the Magnetic Field B from the Interior of a Superconductor --
Text of Note
Note continued:16.2.Photonic Crystals: An Overview --16.3.Photonic Crystals: Theoretical Considerations --16.4.Phononic Crystals --16.5.Left-Handed Metamaterials (LHMs) --16.6.Designing, Fabricating, and Measuring LHMs --16.7.Key Points --16.8.Problems --pt. VDeviations from Periodicity --17.Surfaces and Interfaces --17.1.Surface Preparation --17.2.Relaxation and Reconstruction --17.3.Surface States --17.4.Work Function --17.5.Measuring the Work Function --17.6.p -- n Homojunction in Equilibrium --17.7.p -- n Homojunction Under an External Voltage V --17.8.Some Applications of Interfaces --17.9.Key Points --17.10.Problems --18.Disordered and Other Nonperiodic Solids --18.1.Introductory Remarks --18.2.Alloys and the Hume-Rothery Rule --18.3.Glasses and other Amorphous Systems --18.4.Distribution and Correlation Functions --18.5.Quasi-Crystals --18.6.Electron Transport and Quantum Interference --18.7.Band Structure, Static Disorder, and Localization --18.7.1.3D Case --18.7.2.2D Case --18.7.3.1D and quasi 1D Systems --18.8.Calculation Techniques --18.8.1.Coherent Potential Approximation --18.8.2.Weak Localization due to Quantum Interference --18.8.3.Scaling Approach --18.8.4.Quasi-One-Dimensional Systems and Scaling --18.8.5.Potential Well Analogy --18.9.Quantum Hall Effect --18.10.Key Points --18.11.Problems --19.Finite Systems --19.1.Introduction --19.2.Metallic Clusters --19.3.Fullerenes --19.4.C60-Based Solids --19.5.Carbon Nanotubes --19.6.Other Clusters --19.7.Quantum Dots --19.7.1.Overview --19.7.2.Optical Transitions --19.7.3.QDs and Coulomb Blockade --19.8.Key Points --19.9.Problems --pt. VICorrelated Systems --20.Magnetic Materials, I: Phenomenology --
Text of Note
Note continued:12.4.Second-Order Correction to the Total JM Energy --12.5.Ionic Interactions in Real Space --12.6.Phononic Dispersions in Metals --12.7.Scattering by Phonons, Mean Free Path, and the Dimensionales Constant λ in Metals --12.8.Key Points --12.9.Problems --pt. IVMaterials --13.Simple Metals and Semiconductors Revisited --13.1.Band Structure and Fermi Surfaces of Simple Metals --13.1.1.Alkali Metals --13.1.2.Alkaline Earths: Be, Mg, Ca, Sr, Ba, and Ra --13.1.3.Trivalent Metals --13.1.4.Tetravalent Metals --13.2.Band Structure of Semiconductors --13.3.Jones Zone and the Disappearance of the Fermi Surface --13.4.Mechanical Properties of Semiconductors --13.5.Magnetic Susceptibility of Semiconductors --13.6.Optical and Transport Properties of Semiconductors --13.6.1.Excitons --13.6.2.Conductivity and Mobility in Semiconductors --13.7.Silicon Dioxide (SiO2) --13.8.Graphite and Graphene --13.9.Organic semiconductors --13.10.Key Points --13.11.Questions and Problems --14.Closed-Shell Solids --14.1.Van Der Waals Solids --14.2.Ionic Compounds I: Types and Crystal Structures --14.3.Ionic Compounds II: Mechanical Properties --14.4.Ionic Compounds III: Optical Properties --14.5.Key Points --14.6.Problems --15.Transition Metals and Compounds --15.1.Experimental Data for the Transition Metals --15.2.Calculations I: APW or KKR --15.3.Calculations II: LCAO --15.4.Calculations III: The Simple Friedel Model --15.5.Compounds of Transition Elements, I: Perovskites --15.6.Compounds of Transition Elements, II: High Tc Superconducting Materials --15.7.Compounds of Transition Metals, III: Oxides, etc. --15.8.Key Points --15.9.Problems --16.Artificial Periodic Structures --16.1.Semiconductor Superlattices --
Text of Note
Note continued:8.5.4.Phonon-Phonon Interactions, Thermal Expansion, Melting, Structural Phase Transitions, Solitons, Breathers --8.5.5.Disorder and Many Body Effects in Coexistence --8.5.6.Quantum Informaties and Solid State Systems --8.6.Key Points --8.7.Problems --pt. IIIMore About Periodicity & its Consequences --9.Crystal Structure and Ionic Vibrations --9.1.Experimental Determination of Crystal Structures --9.2.Determination of the Frequency vs. Wavevector --9.3.Theoretical Calculation of the Phonon Dispersion Relation --9.4.Debye-Waller Factor and the Inelastic Cross-Section --9.5.Key Points --9.6.Problems --10.Electrons in Periodic Media. The Role of Magnetic Field --10.1.Introduction --10.2.Dispersion Relations, Surfaces of Constant Energy, and DOS: A Reminder --10.3.Effective Hamiltonian and Semiclassical Approximation --10.4.Semiclassical Trajectories in the Presence of a Magnetic Field --10.5.Two Simple but Elucidating TB Models --10.6.Cyclotron Resonance and the de Haas-van Alphen Effect --10.7.Hall Effect and Magnetoresistance --10.8.Key Points --10.9.Problems --11.Methods for Calculating the Band Structure --11.1.Introductory Remarks --11.2.Ionic and Total Pseudopotentials --11.3.Schrodinger Equation, Plane Wave Expansion, and Bloch's Theorem --11.4.Plane Waves and Perturbation Theory --11.5.Muffin-Tin Potential --11.6.Schrodinger Equation and the Augmented Plane Wave (APW) Method --11.7.Schrodinger Equation and the Korringa-Kohn-Rostoker (KKR) Method --11.8.k p Method of Band Structure Calculations --11.9.Key Points --11.10.Problems --12.Pseudopotentials in Action --12.1.One-Dimensional Case --12.2.Two-Dimensional Square Lattice --12.2.1.Spaghetti Diagrams --12.2.2.Fermi Lines --12.3.Harrison's Construction --
Text of Note
Note continued:6.Solids as Supergiant Molecules: LCAO --6.1.Diversion: The Coupled Pendulums Model --6.2.Introductory Remarks Regarding the LCAO Method --6.3.Single Band One-Dimensional Elemental "Metal" --6.4.One-Dimensional Ionic "Solid" --6.5.One-Dimensional Molecular "Solid" --6.6.Diversion: Eigenoscillations in One-Dimensional "solid" with two Atoms Per Primitive Cell --6.7.One-Dimensional Elemental Sp1 "Semiconductor" --6.8.One-Dimensional Compound Sp1 "Semiconductor" --6.9.Key Points --6.10.Problems --7.Semiconductors and Other Tetravalent Solids --7.1.Lattice Structures: A Reminder --7.2.Band Edges and Gap --7.3.Differences Between the 1-D and the 3-D Case and Energy Diagrams --7.4.Metals, Semiconductors, and Ionic Insulators --7.5.Holes --7.6.Effective Masses and DOS --7.7.Dielectric Function and Optical Absorption --7.8.Effective Hamiltonian --7.9.Impurity Levels --7.9.1.Impurity Levels: The General Picture --7.9.2.Impurity Levels: Doping --7.10.Concentration of Electrons and Holes at Temperature T --7.10.1.Intrinsic case --7.10.2.Extrinsic case --7.11.Band Structure and Electronic DOS --7.12.Eigenfrequencies, Phononic DOS, and Dielectric Function --7.13.Key Points --7.14.Problems --8.Beyond the Jellium and the LCAO: An Outline --8.1.Introductory Remarks --8.2.Four Basic Approximations --8.3.Density Functional Theory --8.4.Outline of an Advanced Scheme for Calculating the Properties of Solids --8.5.Beyond the Four Basic Approximations --8.5.1.Periodicity Broken or Absent --8.5.2.Electron-Electron Correlations, Quasi-Particles, Magnetic Phases, and Superconductivity --8.5.3.Electron-Phonon Interactions, Transport Properties, Superconductivity, and Polarons --
Text of Note
Note continued:3.1.8.Liquid Crystals --3.1.9.Self-Assembled Soft Matter --3.1.10.Artificial Structures --3.1.11.Clusters and Other Finite Systems --3.2.Bonding Types and Resulting Properties --3.2.1.Simple Metals --3.2.2.Transition Metals and Rare Earths --3.2.3.Covalent Solids --3.2.4.Ionic Solids --3.2.5.Van der Waals Bonded Solids --3.2.6.Hydrogen Bonded Solids --3.3.Short Introduction to Crystal Structures --3.3.1.Some Basic Definitions --3.3.2.Unit and Primitive Cells of Some Commonly Occurring 3-D Crystal Structures --3.3.3.Systems and Types of 3D Bravais Lattices --3.3.4.Crystal Planes and Miller Indices --3.4.Bloch Theorem, Reciprocal Lattice, Bragg Planes, and Brillouin Zones --3.4.1.Bloch Theorem --3.4.2.Reciprocal Lattice --3.4.3.Bragg Planes --3.4.4.Brillouin Zones --3.5.Key Points --3.6.Questions and Problems --pt. IITwo Simple Models for Solids --4.Jellium Model and Metals I: Equilibrium Properties --4.1.Introduction --4.2.Electronic Eigenfunctions, Eigenenergies, Number of States --4.3.Kinetic and Potential Energy, Pressures, and Elastic Moduli --4.4.Acoustic Waves are the Ionic Eigenoscillations in the JM --4.5.Thermodynamic Quantities --4.5.1.General Formulas --4.5.2.Specific Heat, Cv --4.5.3.Bulk Thermal Expansion Coefficient --4.6.Key Points --4.7.Problems --5.Jellium Model and Metals II: Response to External Perturbations --5.1.Response to Electric Field --5.2.Dielectric Function --5.3.Static Electrical Conductivity --5.4.Phonon Contribution to Resistivity --5.5.Response in the Presence of a Static Uniform Magnetic Field --5.5.1.Magnetic Resonances --5.5.2.Hall Effect and Magnetoresistance --5.5.3.Magnetic Susceptibility, Xm --5.6.Thermoelectric Response --5.7.Key Points --5.8.Problems --