NOTES PERTAINING TO PUBLICATION, DISTRIBUTION, ETC.
Text of Note
Print
INTERNAL BIBLIOGRAPHIES/INDEXES NOTE
Text of Note
Includes bibliographical references and index.
CONTENTS NOTE
Text of Note
Some of the solutions contain extensions via discussion about topics of current interest in the field of semiconductor physics, such as spin-orbit coupling and k-linear band dispersion. --Book Jacket.
Text of Note
The major changes made in the fourth edition include: an extensive appendix about the important and by now well-established deep center known as the DX center, additional problems and the solutions to over fifty of the problems at the end of the various chapters. --
Text of Note
This fourth edition of the well-established Fundamentals of Semiconductors serves to fill the gap between a general solid-state physics textbook and research articles by providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors. The approach is physical and intuitive rather than formal and pedantic. Theories are presented to explain experimental results. This textbook has been written with both students and researchers in mind. Its emphasis is on understanding the physical properties of Si and similar tetrahedrally coordinated semiconductors. The explanations are based on physical insights. Each chapter is enriched by an extensive collection of tables of material parameters, figures, and problems. Many of these problems "lead the student by the hand" to arrive at the results. --
Text of Note
Note continued:Discovery and Very Basics of the Quantum Hall Effect /Klaus von Klitzing --Birth of the Semiconductor Superlattice /Leo Esaki --Appendix BSolutions to Some of the Problems --Appendix CRecent Development --Appendix DRecent Developments and References.
Text of Note
Note continued:9.3.1.Phonons in Superlattices: Folded Acoustic and Confined Optic Modes --9.3.2.Folded Acoustic Modes: Macroscopic Treatment --9.3.3.Confined Optical Modes: Macroscopic Treatment --9.3.4.Electrostatic Effects in Polar Crystals: Interface Modes --9.4.Raman Spectra of Phonons in Semiconductor Superlattices --9.4.1.Raman Scattering by Folded Acoustic Phonons --9.4.2.Raman Scattering by Confined Optical Phonons --9.4.3.Raman Scattering by Interface Modes --9.4.4.Macroscopic Models of Electron-LO Phonon (Frohlich) Interaction in Multiple Quantum Wells --9.5.Electrical Transport: Resonant Tunneling --9.5.1.Resonant Tunneling Through a Double-Barrier Quantum Well --9.5.2.I-V Characteristics of Resonant Tunneling Devices --9.6.Quantum Hall Effects in Two-Dimensional Electron Gases --9.6.1.Landau Theory of Diamagnetism in a Three-Dimensional Free Electron Gas --9.6.2.Magneto-Conductivity of a Two-Dimensional Electron Gas: Filling Factor --9.6.3.Experiment of von Klitzing, Pepper and Dorda --9.6.4.Explanation of the Hall Plateaus in the Integral Quantum Hall Effect --9.7.Concluding Remarks --Problems --Summary --Appendix APioneers of Semiconductor Physics Remember... --Ultra-Pure Germanium: From Applied to Basic Research or an Old Semiconductor Offering New Opportunities /Eugene E. Haller --Two Pseudopotential Methods: Empirical and Ab Initio /Marvin L. Cohen --Early Stages of Band-Structures Physics and Its Struggles for a Place in the Sun /Conyers Herring --Cyclotron Resonance and Structure of Conduction and Valence Band Edges in Silicon and Germanium /Charles Kittel --Optical Properties of Amorphous Semiconductors and Solar Cells /Jan Tauc --Optical Spectroscopy of Shallow Impurity Centers /Elias Burstein --On the Prehistory of Angular Resolved Photoemission /Neville V. Smith --
Text of Note
Note continued:6.6.3.Electroreflectance (Franz-Keldysh Effect) --6.6.4.Photoreflectance --6.6.5.Reflectance Difference Spectroscopy --6.7.Addendum (Third Edition): Dielectric Function --Problems --Summary --7.Optical Properties II --7.1.Emission Spectroscopies --7.1.1.Band-to-Band Transitions --7.1.2.Free-to-Bound Transitions --7.1.3.Donor-Acceptor Pair Transitions --7.1.4.Excitons and Bound Excitons --7.1.5.Luminescence Excitation Spectroscopy --7.2.Light Scattering Spectroscopies --7.2.1.Macroscopic Theory of Inelastic Light Scattering by Phonons --7.2.2.Raman Tensor and Selection Rules --7.2.3.Experimental Determination of Raman Spectra --7.2.4.Microscopic Theory of Raman Scattering --7.2.5.Detour into the World of Feynman Diagrams --7.2.6.Brillouin Scattering --7.2.7.Experimental Determination of Brillouin Spectra --7.2.8.Resonant Raman and Brillouin Scattering --Problems --Summary --8.Photoelectron Spectroscopy --8.1.Photoemission --8.1.1.Angle-Integrated Photoelectron Spectra of the Valence Bands --8.1.2.Angle-Resolved Photoelectron Spectra of the Valence Bands --8.1.3.Core Levels --8.2.Inverse Photoemission --8.3.Surface Effects --8.3.1.Surface States and Surface Reconstruction --8.3.2.Surface Energy Bands --8.3.3.Fermi Level Pinning and Space Charge Layers --Problems --Summary --9.Effect of Quantum Confinement on Electrons and Phonons in Semiconductors --9.1.Quantum Confinement and Density of States --9.2.Quantum Confinement of Electrons and Holes --9.2.1.Semiconductor Materials for Quantum Wells and Superlattices --9.2.2.Classification of Multiple Quantum Wells and Superlattices --9.2.3.Confinement of Energy Levels of Electrons and Holes --9.2.4.Some Experimental Results --9.3.Phonons in Superlattices --
Text of Note
Note continued:5.2.5.Temperature Dependence of Mobilities --5.3.Modulation Doping --5.4.High-Field Transport and Hot Carrier Effects --5.4.1.Velocity Saturation --5.4.2.Negative Differential Resistance --5.4.3.Gunn Effect --5.5.Magneto-Transport and the Hall Effect --5.5.1.Magneto-Conductivity Tensor --5.5.2.Hall Effect --5.5.3.Hall Coefficient for Thin Film Samples (van der Pauw Method) --5.5.4.Hall Effect for a Distribution of Electron Energies --Problems --Summary --6.Optical Properties I --6.1.Macroscopic Electrodynamics --6.1.1.Digression: Units for the Frequency of Electromagnetic Waves --6.1.2.Experimental Determination of Optical Functions --6.1.3.Kramers-Kronig Relations --6.2.Dielectric Function --6.2.1.Experimental Results --6.2.2.Microscopic Theory of the Dielectric Function --6.2.3.Joint Density of States and Van Hove Singularities --6.2.4.Van Hove Singularities in εi --6.2.5.Direct Absorption Edges --6.2.6.Indirect Absorption Edges --6.2.7."Forbidden" Direct Absorption Edges --6.3.Excitons --6.3.1.Exciton Effect at M0 Critical Points --6.3.2.Absorption Spectra of Excitons --6.3.3.Exciton Effect at M1 Critical Points or Hyperbolic Excitons --6.3.4.Exciton Effect at M3 Critical Points --6.4.Phonon-Polaritons and Lattice Absorption --6.4.1.Phonon-Polaritons --6.4.2.Lattice Absorption and Reflection --6.4.3.Multiphonon Lattice Absorption --6.4.4.Dynamic Effective Ionic Charges in Heteropolar Semiconductors --6.5.Absorption Associated with Extrinsic Electrons --6.5.1.Free-Carrier Absorption in Doped Semiconductors --6.5.2.Absorption by Carriers Bound to Shallow Donors and Acceptors --6.6.Modulation Spectroscopy --6.6.1.Frequency Modulated Reflectance and Thermoreflectance --6.6.2.Piezoreflectance --
Text of Note
Note continued:2.7.3.Overlap Parameters and Nearest-Neighbor Distances --Problems --Summary --3.Vibrational Properties of Semiconductors, and Electron-Phonon Interactions --3.1.Phonon Dispersion Curves of Semiconductors --3.2.Models for Calculating Phonon Dispersion Curves of Semiconductors --3.2.1.Force Constant Models --3.2.2.Shell Model --3.2.3.Bond Models --3.2.4.Bond Charge Models --3.3.Electron-Phonon Interactions --3.3.1.Strain Tensor and Deformation Potentials --3.3.2.Electron-Acoustic-Phonon Interaction at Degenerate Bands --3.3.3.Piezoelectric Electron-Acoustic-Phonon Interaction --3.3.4.Electron-Optical-Phonon Deformation Potential Interactions --3.3.5.Frohlich Interaction --3.3.6.Interaction Between Electrons and Large-Wavevector Phonons: Intervalley Electron-Phonon Interaction --Problems --Summary --4.Electronic Properties of Defects --4.1.Classification of Defects --4.2.Shallow or Hydrogenic Impurities --4.2.1.Effective Mass Approximation --4.2.2.Hydrogenic or Shallow Donors --4.2.3.Donors Associated with Anisotropic Conduction Bands --4.2.4.Acceptor Levels in Diamond and Zinc-Blende-Type Semiconductors --4.3.Deep Centers --4.3.1.Green's Function Method for Calculating Defect Energy Levels --4.3.2.Application of the Green's Function Method: Linear Combination of Atomic Orbitals --4.3.3.Another Application of the Green's Function Method: Nitrogen in GaP and GaAsP Alloys --4.3.4.Final Note on Deep Centers --Problems --Summary --5.Electrical Transport --5.1.Quasi-Classical Approach --5.2.Carrier Mobility for a Nondegenerate Electron Gas --5.2.1.Relaxation Time Approximation --5.2.2.Nondegenerate Electron Gas in a Parabolic Band --5.2.3.Dependence of Scattering and Relaxation Times on Electron Energy --5.2.4.Momentum Relaxation Times --