/ Gyula O.H. Katona, Alexander Schrijver, Tamaas Szionyi (eds.
.PUBLICATION, DISTRIBUTION, ETC
Place of Publication, Distribution, etc.
Berlin ;Heidelberg ;New York
Name of Publisher, Distributor, etc.
: Springer
Date of Publication, Distribution, etc.
, 2010.
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
365 p., ill.
SERIES
Series Title
(Bolyai Society mathematical studies
Volume Designation
; 20.)
NOTES PERTAINING TO PUBLICATION, DISTRIBUTION, ETC.
Text of Note
Print
INTERNAL BIBLIOGRAPHIES/INDEXES NOTE
Text of Note
Includes bibliographical references.
CONTENTS NOTE
Text of Note
Cover -- Table of Contents -- Preface -- High Degree Graphs Contain Large-Star Factors -- 1. Introduction -- 2. Regular Graphs -- 3. The Proof Of The Main Result -- 4. Concluding Remarks And Open Problems -- References -- Iterated Triangle Partitions -- 1. Introduction -- 2. Subdividing By Bisectors -- 2.1. Subdividing Into Three Daughters -- 2.2. Dividing Into Six Triangles -- 3. Subdividing By Medians -- 3.1. Analytic Approach -- 3.2. Hyperbolic Approach -- 4. Subdividing By The Gergonne Point -- 5. Subdividing By The Lemoine Point -- 6. Concluding Remarks -- References -- Pagerank And Random Walks On Graphs -- 1. Introduction -- 2. Laplacian, The Green'S Function And Pagerank -- 3. Pagerank, The Hitting Time And The Effective Resistance In Electrical Networks -- 4. Several Matrix-Forest Theorems -- 5. Pagerank And Other Invariants In Terms Of Rooted Spanning Forests -- 6. Using The Generalized Hitting Time To Find Sparse Cuts -- 7. Using Pagerank To Estimate The Effective Resistance -- References -- Solution Of Peter Winkler'S Pizza Problem*! -- 1. Introduction -- 2. The Lower Bound -- 2.1. Preliminaries -- 2.2. Minimal Triples -- 2.3. An Auxiliary One-Jump Strategy -- 2.4. A Two-Jump Strategy -- 2.5. Proof of the Lower Bound -- 3. The Upper Bound -- 4. Fixed Number Of Slices -- 5. Cuttings Into 15 And 21 Slices -- 6. One-Jump Strategies -- 6.1. Lower Bound -- 6.2. Upper Bound -- 7. Algorithms -- 7.1. Linear Algorithm -- 7.2. Optimal Strategies -- References -- Tight Bounds For Embedding Bounded Degree Trees -- 1. Introduction -- 2. The Non-Extremal Case -- 2.1. Some Tools for the Proofs in the Non-Extremal Cases -- 2.2 . The First Non-Extremal Case: T Has a Broad Subtree -- 2.3. The Second Non-Extremal Case: T Has a Long Subtree -- 3. The Extremal Case -- 3.1. The First Extremal Case -- 3.2. The Second Extremal Case -- 4. Lower Bound For The Minimum Degree In G -- 4.1. The First Extremal Case -- 4.2. The Second Extremal Case -- References -- Betti Numbers Are Testable* -- 1. Introduction -- 2. The Convergence Of Simplicial Complexes -- 3. Betti Numbers And Combinatorial Laplacians -- 4. Weak Convergence Of Probability Measures -- 5. Spectral Convergence -- 6. The Proof Of Theorem 1 -- References -- Rigid And Globally Rigid Graphs With Pinned Vertices -- 1. Introduction -- 2. Rigid Frameworks With Pinned Vertices -- 3. Rigid Graphs With Pinned Vertices -- 4. The Two-Dimensional Rigidity Matroid -- 5. Optimal Families Of Tracks And Smallest Pinning Sets -- 6. The Network Localization Problem -- 7. Graphs With A Connected Rigidity Matroid -- 7.1. M-Connected Graphs With Pinned Vertices -- 8. Low Cost Anchor Sets In Uniquely Localizable Networks -- References -- Noise Sensitivity And Chaos In Social Choice Theory -- 1. Introduction -- 2. Proofs Of The Equivalence Theorems -- 2.1. A Coupling Argument -- 2.2. An Elementary Harmonic Analysis Argument -- 2.3. Individual Power -- 3. Multi-Level Majority -- T$