استفاده از روش licneP xirtaM برای نوفه زدایی رکورد زلزله
.PUBLICATION, DISTRIBUTION, ETC
Place of Publication, Distribution, etc.
تهران
DISSERTATION (THESIS) NOTE
Dissertation or thesis details and type of degree
کارشناسی ارشد
Body granting the degree
صنعتی خواجه نصیرالدین طوسی
Date of degree
۱۳۹۸
Discipline of degree
زلزله
SUMMARY OR ABSTRACT
Text of Note
در هنگام وقوع زلزله، بسیاری از شتابنگارها حرکت زمین را ثبت میکنند، اما فقط تعداد کمی از آنها به روش مرسوم قابل تصحیح هستند. زیرا این سیگنالهای تصحیحنشده دو مشکل عمده همراه خود دارند، اولا میزان نسبت سیگنال به نوفه در آنصها پایین است. ثانیا نوفهها غیر ایستا میباشند. برای تصحیح این سیگنال ها روش های متعددی پیشنهاد شده اند. یکی از روشهای کارآمد جهت تصحیح چنین سیگنالهایی، تئوری موجک است. یکی از مهترین نقاط ضعف این روش ها، حساسیت بالای آنها به محتوای فرکانسی سیگنال رکورد شده و پارامترهای نوفه می باشد. برای برطرف شدن این نقاط ضعف، این پایان نامه روش نوفه زدایی بر اساس MPMTS) licneP xirtaM emiT trohS) را ارائه داده است که این روش حساسیت کمتری نسبت به پارامترهای سیگنال و نوفه دارد. به دلیل توانایی روش MPMTS در تشخیص پالس ایجاد شده در سیگنال، در این مطالعه علاوه بر نوفه زدایی، برای تشخیص آسیب های با فرکانس بالا نیز از روش MPMTS استفاده شده است. برخورد دو ساختمان مجاور در هنگام زلزله یکی از موارد ایجاد پالس با فرکانس بالا در پاسخ سازه می باشد که در این مطالعه مورد بررسی قرار گرفته است.
Text of Note
Recorded acceleration histories are known as one of the most valuable information remained from past earthquakes in the field of earthquake engineering and engineering seismology. These acceleration histories are generally contaminated with high level of noises masking the important information embedded in such records. Due to low signal to noise ratio )SNR( and non-stationary characteristics of the noises, conventional de-noising methods are not capable of distinguishing the original part of the seismic signals. Therefore, several advanced methods such as sliding discrete Fourier transform )SDFT( and wavelet-based methods were proposed to correct the noisy signals. One of the most important deficiencies associated with the state-of-the-art approaches is their high level of sensitivity to the frequency content of recorded signals, sampling rates, and noise parameters. Therefore, a single reliable filtering approach might not be feasible for a wide range of signal and noise parameters. To fill this technical gap, this study proposes a de-noising approach based on the short-time matrix pencil method )STMPM( that decomposes the recorded signals in a sliding window into time-indexed complex frequencies. The noise contents of each record are recognized and eliminated based on the real part of the complex frequencies )known as damping factors(, which has low sensitivity to the parameters of signals and noises. The robustness of the proposed approach to detect and remove high frequency noises is validated through the use of noisy seismic records. Moreover, this method is able to correct the baseline of the noisy signal, without further needs for performing polynomial baseline corrections. The main purpose of STMPM technique is to determine the fault location in Electrical Engineering. Therefore, in addition to noise reduction, the STMPM method is also can be used for detection of structural damage in the field of structural health monitoring )SHM(. SHM is becoming a key element of monitoring and maintenance of modern cities. Within past decade, SHM approaches are widely used in bridges, roads, skyscrapers, critical facilities and buildings to enhance public safety and cost efficiencies under extreme events, such as earthquakes. Several advanced wave-based methods such as sliding discrete Fourier transform )SDFT(, discrete wavelet transform )DWT( and Hilbert transform )HT( were broadly used through the SHM to detect different failure modes of systems. Due to their high level of sensitivity to the sampling frequency, measurement noise, and damage-induced pulse parameters, especially in the systems with high frequency damage contents, this study proposes a high frequency damage detection approach based on the short-time matrix pencil method )STMPM(. The STMPM decomposes the recorded signals in a sliding window into time-indexed complex frequencies. The damage time instants are estimated based on zero damping factors )real part of the complex frequencies( when damage-induced pulse is placed in the middle of the sliding window. In this study, pounding between two adjacent buildings is considered as a case study of high frequency damage scenario, and also the proposed STMPM detection technique is compared against DWT with commonly used mother wavelets. According to the simulation results, the STMPM-based detection found to be more robust against DWT-based techniques and has low sensitivity to the noise parameters and sampling rate. Keywords De-noising, Acceleration records, Structural health monitoring, High frequency damage, Damage detection, Structural pounding, Short-time matrix pencil method, Wavelet analysis, Discrete wavelet transform.