Fracture mechanics of electromagnetic materials: nonlinear field theory and applications
.PUBLICATION, DISTRIBUTION, ETC
Place of Publication, Distribution, etc.
London
Name of Publisher, Distributor, etc.
Imperial College Press
Date of Publication, Distribution, etc.
c2013
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
xix, 305 p. : ill
GENERAL NOTES
Text of Note
Includes bibliographical references )p. 276-298( and index
NOTES PERTAINING TO TITLE AND STATEMENT OF RESPONSIBILITY
Text of Note
Xiaohong Chen, Yiu-Wing Mai
CONTENTS NOTE
Text of Note
Machine generated contents note: 1.1.Historical Perspective -- 1.2.Stress Intensity Factors )SIF( -- 1.3.Energy Release Rate )ERR( -- 1.4.J-Integral -- 1.5.Dynamic Fracture -- 1.6.Viscoelastic Fracture -- 1.7.Essential Work of Fracture )EWF( -- 1.8.Configuration Force )Material Force( Method -- 1.9.Cohesive Zone and Virtual Internal Bond Models -- 2.1.Notations -- 2.1.1.Eulerian and Lagrangian descriptions -- 2.1.2.Electromagnetic field -- 2.1.3.Electromagnetic body force and couple -- 2.1.4.Electromagnetic stress tensor and momentum vector -- 2.1.5.Electromagnetic power -- 2.1.6.Poynting theorem -- 2.2.Maxwell Equations -- 2.3.Balance Equations of Mass, Momentum, Moment of Momentum, and Energy -- 2.4.Constitutive Relations -- 2.5.Linearized Theo -- 3.1.Thermoelasticity -- 3.2.Viscoelasticity -- 3.3.Coupled Theory of Thermoviscoelasticity -- 3.3.1.Fundamental principles of thermodynamics -- 3.3.2.Formulation based on Helmholtz free energy functional --Machine generated contents note: 1.1.Historical Perspective -- 1.2.Stress Intensity Factors )SIF( -- 1.3.Energy Release Rate )ERR( -- 1.4.J-Integral -- 1.5.Dynamic Fracture -- 1.6.Viscoelastic Fracture -- 1.7.Essential Work of Fracture )EWF( -- 1.8.Configuration Force )Material Force( Method -- 1.9.Cohesive Zone and Virtual Internal Bond Models -- 2.1.Notations -- 2.1.1.Eulerian and Lagrangian descriptions -- 2.1.2.Electromagnetic field -- 2.1.3.Electromagnetic body force and couple -- 2.1.4.Electromagnetic stress tensor and momentum vector -- 2.1.5.Electromagnetic power -- 2.1.6.Poynting theorem -- 2.2.Maxwell Equations -- 2.3.Balance Equations of Mass, Momentum, Moment of Momentum, and Energy -- 2.4.Constitutive Relations -- 2.5.Linearized Theo -- 3.1.Thermoelasticity -- 3.2.Viscoelasticity -- 3.3.Coupled Theory of Thermoviscoelasticity -- 3.3.1.Fundamental principles of thermodynamics -- 3.3.2.Formulation based on Helmholtz free energy functional --Machine generated contents note: 1.1.Historical Perspective -- 1.2.Stress Intensity Factors )SIF( -- 1.3.Energy Release Rate )ERR( -- 1.4.J-Integral -- 1.5.Dynamic Fracture -- 1.6.Viscoelastic Fracture -- 1.7.Essential Work of Fracture )EWF( -- 1.8.Configuration Force )Material Force( Method -- 1.9.Cohesive Zone and Virtual Internal Bond Models -- 2.1.Notations -- 2.1.1.Eulerian and Lagrangian descriptions -- 2.1.2.Electromagnetic field -- 2.1.3.Electromagnetic body force and couple -- 2.1.4.Electromagnetic stress tensor and momentum vector -- 2.1.5.Electromagnetic power -- 2.1.6.Poynting theorem -- 2.2.Maxwell Equations -- 2.3.Balance Equations of Mass, Momentum, Moment of Momentum, and Energy -- 2.4.Constitutive Relations -- 2.5.Linearized Theo -- 3.1.Thermoelasticity -- 3.2.Viscoelasticity -- 3.3.Coupled Theory of Thermoviscoelasticity -- 3.3.1.Fundamental principles of thermodynamics -- 3.3.2.Formulation based on Helmholtz free energy functional --Machine generated contents note: 1.1.Historical Perspective -- 1.2.Stress Intensity Factors )SIF( -- 1.3.Energy Release Rate )ERR( -- 1.4.J-Integral -- 1.5.Dynamic Fracture -- 1.6.Viscoelastic Fracture -- 1.7.Essential Work of Fracture )EWF( -- 1.8.Configuration Force )Material Force( Method -- 1.9.Cohesive Zone and Virtual Internal Bond Models -- 2.1.Notations -- 2.1.1.Eulerian and Lagrangian descriptions -- 2.1.2.Electromagnetic field -- 2.1.3.Electromagnetic body force and couple -- 2.1.4.Electromagnetic stress tensor and momentum vector -- 2.1.5.Electromagnetic power -- 2.1.6.Poynting theorem -- 2.2.Maxwell Equations -- 2.3.Balance Equations of Mass, Momentum, Moment of Momentum, and Energy -- 2.4.Constitutive Relations -- 2.5.Linearized Theo -- 3.1.Thermoelasticity -- 3.2.Viscoelasticity -- 3.3.Coupled Theory of Thermoviscoelasticity -- 3.3.1.Fundamental principles of thermodynamics -- 3.3.2.Formulation based on Helmholtz free energy functional --Machine generated contents note: 1.1.Historical Perspective -- 1.2.Stress Intensity Factors )SIF( -- 1.3.Energy Release Rate )ERR( -- 1.4.J-Integral -- 1.5.Dynamic Fracture -- 1.6.Viscoelastic Fracture -- 1.7.Essential Work of Fracture )EWF( -- 1.8.Configuration Force )Material Force( Method -- 1.9.Cohesive Zone and Virtual Internal Bond Models -- 2.1.Notations -- 2.1.1.Eulerian and Lagrangian descriptions -- 2.1.2.Electromagnetic field -- 2.1.3.Electromagnetic body force and couple -- 2.1.4.Electromagnetic stress tensor and momentum vector -- 2.1.5.Electromagnetic power -- 2.1.6.Poynting theorem -- 2.2.Maxwell Equations -- 2.3.Balance Equations of Mass, Momentum, Moment of Momentum, and Energy -- 2.4.Constitutive Relations -- 2.5.Linearized Theo -- 3.1.Thermoelasticity -- 3.2.Viscoelasticity -- 3.3.Coupled Theory of Thermoviscoelasticity -- 3.3.1.Fundamental principles of thermodynamics -- 3.3.2.Formulation based on Helmholtz free energy functional --Machine generated contents note: 1.1.Historical Perspective -- 1.2.Stress Intensity Factors )SIF( -- 1.3.Energy Release Rate )ERR( -- 1.4.J-Integral -- 1.5.Dynamic Fracture -- 1.6.Viscoelastic Fracture -- 1.7.Essential Work of Fracture )EWF( -- 1.8.Configuration Force )Material Force( Method -- 1.9.Cohesive Zone and Virtual Internal Bond Models -- 2.1.Notations -- 2.1.1.Eulerian and Lagrangian descriptions -- 2.1.2.Electromagnetic field -- 2.1.3.Electromagnetic body force and couple -- 2.1.4.Electromagnetic stress tensor and momentum vector -- 2.1.5.Electromagnetic power -- 2.1.6.Poynting theorem -- 2.2.Maxwell Equations -- 2.3.Balance Equations of Mass, Momentum, Moment of Momentum, and Energy -- 2.4.Constitutive Relations -- 2.5.Linearized Theo -- 3.1.Thermoelasticity -- oment of Momentum, and Energy -- 2.4.Constitutive Relations -- 2.5.Linearized Theo -- 3.1.Thermoelasticity -- 3.2.Viscoelasticity -- 3.3.Coupled Theory of Thermoviscoelasticity -- 3