" ... a corrected republication of the work as published by Oxford University Press, Oxford, England, and New York, in 1989 )first publication: 1987("--T.p. verso
Text of Note
Includes bibliographical references )p.241-248( and index
NOTES PERTAINING TO TITLE AND STATEMENT OF RESPONSIBILITY
Text of Note
Ian Anderson
CONTENTS NOTE
Text of Note
Machine generated contents note: 1. Introduction and Sperner's theorem -- 1.1 A simple intersection result -- 1.2 Sperner's theorem -- 1.3 A theorem of Bollobas -- Exercises 1 -- 2. Normalized matchings and rank numbers -- 2.1 Sperner's proof -- 2.2 Systems of distinct representatives -- 2.3 LYM inequalities and the normalized matching -- property -- 2.4 Rank numbers: some examples -- Exercises 2 -- 3. Symmetric chains -- 3.1 Symmetric chain decompositions -- 3.2 Dilworth's theorem -- 3.3 Symmetric chains for sets -- 3.4 Applications -- 3.5 Nested chains -- 3.6 Posets with symmetric chain decompositions -- Exercises 3 -- 4. Rank numbers for multisets -- 4.1 Unimodality and log concavity -- 4.2 The normalized matching property -- 4.3 The largest size of a rank number -- Exercises 4 -- 5. Intersecting systems and the Erdos-Ko-Rado -- theorem -- 5.1 The EKR theorem -- 5.2 Generalizations of EKR -- 5.3 Intersecting aintichains with large members -- 5.4 A probability application of EKR -- 5.5 Theorems of Milner and Katona -- 5.6 Some results related to the EKR theorem -- Exercises 5 -- 6. Ideals and a lemma of Kleitman -- 6.1 Kleitman's lemma -- 6.2 The Ahlswede-Daykin inequality -- 6.3 Applications of the FKG inequality to probability -- theory -- 6.4 Chvatal's conjecture -- Exercises 6 -- 7. The Kruskal-Katona theorem -- 7.1 Order relations on subsets -- 7.2 The i-binomial representation of a number -- 7.3 The Kruskal-Katona theorem -- 7.4 Some easy consequences of Kruskal-Katona -- 7.5 Compression -- Exercises 7 -- 8. Antichains -- 8.1 Squashed antichains -- 8.2 Using squashed antichains -- 8.3 Parameters of intersecting antichains -- Exercises 8 -- 9. The generalized Macaulay theorem for multisets -- 9.1 The theorem of Clements and Lindstrom -- 9.2 Some corollaries -- 9.3 A minimization problem in coding theory -- 9.4 Uniqueness of maximum-sized antichains in -- multisets -- Exercises 9 -- 01. Theorems for multisets -- 01.1 Intersecting families -- 01.2 Antichains in multisets -- 01.3 Intersecting antichains -- Exercises 01 -- 11. The Littlewood-Offord problem -- 11.1 Early results -- 11.2 M-part Sperner theorems -- 11.3 Littlewood-Offord results -- Exercises 11 -- 21. Miscellaneous methods -- 21.1 The duality theorem of linear programming -- 21.2 Graph-theoretic methods -- 21.3 Using network flow -- Exercises 21 -- 31. Lattices of antichains and saturated chain partitions -- 31.1 Antichains -- 31.2 Maximum-sized antichains -- 31.3 Saturated chain partitions -- 31.4 The lattice of k-unions -- Exercises 31 -- Hints and solutions -- References -- Index