Menu
Home
Advanced Search
Directory of Libraries
Languages
فارسی
English
العربی
عنوان
Design of CMOS RF integrated circuits and systems
پدید آورنده
Yeo, Kiat Seng
موضوع
، Radio frequency integrated circuits,، Metal oxide semiconductors, Complementary,، Wireless communication systems
رده
TK
7874
.
78
.
Y46
کتابخانه
Central Library and Documents Center of Industrial University of Khaje Nasiredin Toosi
محل استقرار
استان:
Tehran
ـ شهر:
Tehran
تماس با کتابخانه :
88881052
-
88881042
-
021
TITLE AND STATEMENT OF RESPONSIBILITY
Title Proper
Design of CMOS RF integrated circuits and systems
.PUBLICATION, DISTRIBUTION, ETC
Place of Publication, Distribution, etc.
Singapore
Name of Publisher, Distributor, etc.
World Scientific
Date of Publication, Distribution, etc.
2010
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
xv, 341 p. : ill. ; 24 cm.
GENERAL NOTES
Text of Note
Includes bibliographical references and index
NOTES PERTAINING TO TITLE AND STATEMENT OF RESPONSIBILITY
Text of Note
Kiat Seng Yeo, Manh Anh Do, Chirn Chye Boon
CONTENTS NOTE
Text of Note
Chapter 1. RF CMOS Systems on Chips -- 1.1. Modern RF Mobile Technologies -- 1.2. The RF Transceiver System -- 1.3. Modulation and Demodulation Techniques -- 1.4. Multiple Access Techniques -- 1.5. Receiver Sensitivity and Linearity -- 1.6. On-chip Power Amplifier -- 1.7. The Cellular Phone Concept -- 1.8. The CMOS RF Technology -- References -- Chapter 2. RF CMOS Devices and Process Design Kits -- 2.1. Introduction -- 2.2. RF Transistors -- 2.2.1. BSIM3v3 Model -- 2.2.2. BSIM4 Model -- 2.2.3. Figure of Merit -- 2.2.3.1. fT definition and extraction -- 2.2.3.2. fMAX definition and extraction -- 2.2.4. RF Parasitics in MOSFETs -- 2.2.5. Scalable RF CMOS Transistor Modeling -- 2.2.5.1. RF MOSFET model -- 2.2.5.2. Gate resistance modeling -- 2.2.5.3. Source and drain resistance modeling -- 2.2.5.4. Gate to substrate capacitance and resistance modeling -- 2.2.5.5. Gate to source and gate to drain capacitance modeling -- 2.2.5.6. Drain to source capacitance modeling -- 2.2.5.7. Substrate resistance modeling -- 2.3. On-chip Inductors -- 2.3.1. Spiral Inductors on Silicon -- 2.3.1.1. Figure of merits -- 2.3.2. Advantages of Silicon-based Spiral Inductors -- 2.3.3. Identifying Loss Mechanisms in Silicon-based Spiral Inductors -- 2.3.3.1. Metallization resistive loss -- 2.3.3.2. Substrate capacitive and resistive loss -- 2.3.3.3. Substrate eddy current -- 2.3.4. Q-Factor Enhancement Techniques -- 2.3.4.1. Q-factor enhancement using processing technologies -- 2.3.4.2. Q-factor enhancement using active inductors -- 2.3.4.3. Q-factor enhancement using coupled spiral coils -- 2.3.4.4. Q-factor enhancement using layout optimization -- 2.3.4.5. Q-factor enhancement using inductor device model -- 2.3.4.6. Figure of merits for differential spiral inductors -- 2.4. Baluns/Transformers -- 2.4.1. The Ideal Transformer -- 2.4.2. Transformer Types -- 2.4.3. Inductance, Capacitance, and Resistance -- 2.4.4. Coupling Coefficient k, Turn Ratio n, and Quality Factor Q -- 2.4.5. Patterned Ground Shield -- 2.4.6. Designing the Transformer -- 2.5. RF Interconnects -- 2.5.1. Transmission Line Concept -- 2.5.1.1. Transmission line constants -- 2.5.1.2. Transmission line impedances -- 2.5.1.3. Reflection and voltage standing wave ratio -- 2.5.1.4. Frequency-dependent charge distribution -- 2.5.1.5. Effects of dielectric on interconnects -- 2.5.2. Existing Methodologies to Tackle Post Layout Parasitics -- 2.5.3. Proposed Figure of Merit for RF Interconnects -- 2.6. Varactors -- 2.6.1. Functions of Varactors -- 2.6.2. Varactor Design -- 2.7. RF Capacitors -- 2.7.1. Capacitance -- 2.7.2. Geometry -- 2.7.3. Quality Factor and Series Resistance -- 2.7.4. Capacitance Modeling -- 2.7.5. Impedances -- 2.7.6. Design Considerations -- 2.8. Process Design Kits -- 2.8.1. Benefits -- 2.8.2. Advanced Device Modeling and Front-end Design -- 2.8.3. Back-end Design and Accelerated Layout -- 2.8.4. Physical Verification and Silicon Analysis -- 2.8.5. Future of Process Design Kits -- 2.9. Summary -- References -- Chapter 3. RF CMOS Low Noise Amplifiers -- 3.1. Basic Concepts of LNAs -- 3.1.1. Operating Frequency -- 3.1.2. Sensitivity -- 3.1.3. Noise Figure and Voltage Gain -- 3.1.4. 1 -dB Compression Point -- 3.1.5. The 3rd Order Intercept Point -- 3.1.6. S-Parameters -- 3.2. Input Architecture of LNAs -- 3.2.1. Common Source Stage with Resistive Termination -- 3.2.2. Common Gate Stage -- 3.2.3. Common Source Stage with Shunt Feedback -- 3.2.4. Common Source Stage with Source Inductive Degeneration -- 3.3. Input Matching Analysis -- 3.4. Design of a Single-band LNA )LNA1( -- 3.4.1. Noise Figure Optimization -- 3.4.2. Design Methodology -- 3.4.3. Measurement Results -- 3.5. Summary -- References -- Chapter 4. RF Mixers -- 4.1. Introduction -- 4.2. Common Configurations of Active Mixers -- 4.3. Active Mixer with Current Booster -- 4.4. Passive Mixers -- 4.5. Port Isolation and DC Offset in Direct Conversion Mixers -- 4.6. Image Reject Mixers for Low IF Architectures -- References -- Chapter 5. RF CMOS Oscillators -- 5.1. Introduction -- 5.1.1. Ring Oscillator -- 5.1.2. LC Oscillator -- 5.2. Various LC VCO Topologies -- 5.2.1. Colpitts and HartleyLC VCOs -- 5.2.2. Differential LC VCOs -- 5.2.2.1. Complementary LC VCOs -- 5.2.2.2. Tail current source of LC VCOs -- 5.3. LC VCO Design Methodology -- 5.3.1. Topology -- 5.3.1.1. Operation theory -- 5.3.1.2. Equivalent circuit of cross-coupled LC tank VCO -- 5.3.2. Associated Noise Sources of Complementary LC Tank VCO -- 5.3.2.1. Noise sources of the LC tank -- 5.3.2.2. Upconversion of 1/f noise in the tail transistor -- 5.3.3. Noise Sources in Active Devices -- 5.3.3.1. High frequency noise -- 5.3.3.2. Noise sources in cross-coupled transistors -- 5.3.3.3. Optimization of channel length Lch -- 5.3.4. Linear Time Variant )LTV( Phase Noise Analysis -- 5.3.4.1. Definition of Impulse Sensitivity Function )ISF(-د(بخ۹0t( -- 5.3.4.2. Parameterized phase impulse response h۶د )t, ۴د( using ISF -- 5.3.4.3. Phase noise calculation -- 5.3.4.4. Steps to achieve minimal phase noise -- 5.3.5. A 2GHz Cross-Coupled LC Tank VCO -- 5.3.5.1. 2GHz cross-coupled LC tank VCO -- 5.3.5.2. Verifications and discussions -- 5.3.5.3. Experimental results -- 5.3.6. A 9.3 ٶ؟گ 01.4GHz Cross-Coupled Complementary Oscillator -- 5.3.6.1. Phase noise estimation for 01GHzLC tank VCO -- 5.3.6.2. Experimental results -- 5.4. Summary -- References -- Chapter 6. RF CMOS Phase-Locked Loops -- 6.1. Fundamental Principles of a Phase-Locked Loop )PLL( -- 6.2. Transient Characteristics - Tracking -- 6.3. Loop Bandwidth - Second Order PLL -- 6.4. Acquisition -- 6.5. Phase Detector and Loop Filter -- 6.5.1. Phase Detector -- 6.5.1.1. Multiplier -- 6.5.1.2. EXOR gate -- 6.5.1.3. Flip-flop phase detector -- 6.5.1.4. Phase frequency detector -- 6.5.2. Loop Filter -- 6.6. Charge Pump PLL Filter -- 6.7. Noise Characteristics of PLL Building Blocks -- 6.7.1. Phase Noise of VCO -- 6.7.2. Phase Noise of Reference Input Signal -- 6.7.3. Phase Noise of Frequency Divider -- 6.7.4. Phase Noise of Loop Filter -- 6.7.5. Optimum Loop Bandwidth -- 6.8. Summary -- References -- Chapter 7. RF CMOS Prescalers -- 7.1. Prescaler -- 7.1.1. Dual-Modulus Prescaler -- 7.1.2. Dual-Modulus Prescaler with Pulse Swallow Counter -- 7.1.3. Integer-N Architecture through Dual-Modulus Prescaler with Pulse Swallow Counter -- 7.2. DFFs for Prescaler -- 7.2.1. MCML -- 7.2.2. CMOS Dynamic Circuit -- 7.3. Design and Optimization of CMOS Dynamic Circuit )CDC( Based Prescaler -- 7.3.1. E-TSPC Based Divide-by-2 Unit -- 7.3.2. E-TSPC Based Divide-by-2/3 Unit -- 7.3.3. Design Example -- 7.3.4. Simulation and SiliNoise Sources in Active Devices -- 5.3.3.1. High
TOPICAL NAME USED AS SUBJECT
Entry Element
، Radio frequency integrated circuits
Entry Element
، Metal oxide semiconductors, Complementary
Entry Element
، Wireless communication systems
LIBRARY OF CONGRESS CLASSIFICATION
Class number
TK
7874
.
78
.
Y46
PERSONAL NAME - PRIMARY RESPONSIBILITY
Dates
4691-
Entry Element
Yeo, Kiat Seng
Relator Code
AU
AU Do, Manh Anh
AU Boon, Chirn Chye
TI
Proposal/Bug Report
×
Proposal/Bug Report
×
Warning!
Enter The Information Carefully
Error Report
Proposal