Lie groups : an introduction through linear groups
.PUBLICATION, DISTRIBUTION, ETC
Place of Publication, Distribution, etc.
Oxford
Name of Publisher, Distributor, etc.
Oxford University Press
Date of Publication, Distribution, etc.
2002
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
x, 265 p.: ill. ; 25 cm
SERIES
Series Title
Oxford graduate texts in mathematics; 5
GENERAL NOTES
Text of Note
Includes bibliographical references )p. 258- 260( and index
NOTES PERTAINING TO TITLE AND STATEMENT OF RESPONSIBILITY
Text of Note
Wulf Rossmann
CONTENTS NOTE
Text of Note
Machine generated contents note: 1 The exponential map 1 -- 1.1 Vector fields and one-parameter groups of -- linear transformation 1 -- 1.2 Ad, ad, and dexp 21 -- 1.3 The Campbell-Baker-Hausdorff series 22 -- 2 Lie theory 03 -- 2.1 Linear groups: definitions and examples 03 -- 2.2 The Lie algebra of a linear group 44 -- 2.3 Coordinates on a linear group 35 -- 2.4 Connectedness 16 -- 2.5 The Lie correspondence 66 -- 2.6 Homomorphisms and coverings of linear groups 87 -- 2.7 Closed subgroups 78 -- 3 The classical groups 19 -- 3.1 The classical groups: definitions, connectedness 19 -- 3.2 Cartan subgroups 701 -- 3.3 Roots, weights, reflections 511 -- 3.4 Fundamental groups of the classical groups 121 -- 4 Manifolds, homogeneous spaces, Lie groups 231 -- 4.1 Manifolds 231 -- 4.2 Homogeneous spaces 341 -- 4.3 Lie groups 251 -- 5 Integration 561 -- 5.1 Integration on manifolds 561 -- 5.2 Integration on linear groups and -- their homogeneous spaces 171 -- 5.3 Weyl's integration formula for U)n( 971 -- 6 Representations 981 -- 6.1 Representations: definitions 981 -- 6.2 Schur's lemma, Peter-Weyl theorem 791 -- 6.3 Characters 502 -- 6.4 Weyl's character formula for U)n( 212 -- 6.5 Representations of Lie algebras 322 -- 6.6 The Borel-Weil theorem for GL)n, C( 232 -- 6.7 Representations of the classical groups 732 -- Appendix Analytic Functions and Inverse -- Function Theorem 052