Towards an Integrated Urban Water and Energy Network
Subsequent Statement of Responsibility
Anderson, Paul R.
.PUBLICATION, DISTRIBUTION, ETC
Name of Publisher, Distributor, etc.
Illinois Institute of Technology
Date of Publication, Distribution, etc.
2020
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
180
DISSERTATION (THESIS) NOTE
Dissertation or thesis details and type of degree
Ph.D.
Body granting the degree
Illinois Institute of Technology
Text preceding or following the note
2020
SUMMARY OR ABSTRACT
Text of Note
Wastewater collection systems, among the oldest features of urban infrastructure, are typically dedicated to collect and transport wastewater from users to water resource recovery facilities (WRRFs). Since the 1970s, wastewater engineers and scientists have come to understand that wastewater collection systems can bring benefits for urban water and energy networks, including thermal energy recovery and converting pipelines to bioreactors. However, there is little knowledge about the temporal and spatial changes of collection systems parameters that are important for these applications. Furthermore, the vast majority of existing studies of these applications have focused on laboratory or extremely small-scale systems; there have been few studies about beneficial applications associated with large-scale systems. The purpose of this study is to increase our understanding of how urban wastewater collection systems can bring potential benefits to urban water and energy systems. Models describing wastewater hydraulics, temperature, and water quality can provide valuable information to help evaluate thermal energy recovery and wastewater pretreatment feasibility. These kinds of models, and supporting data from a case study, were used in this study; sizes of the theoretical wastewater collection systems range from 2.6 L/s to 52 L/s, and the sample locations of the case study had flows ranging from 2.3 L/s to 24.5 L/s. A cost-benefit analysis of wastewater source heat pumps was used to evaluate the thermal energy recovery feasibility for different sizes of wastewater collection systems. Results show that the large collection system can support a large capacity heat pump system with a relatively low unit initial cost. Small collection systems have a slightly lower unit operating cost due to the relatively high wastewater temperature. When the heat pump system capacity design was based on the average available energy from the collection system, larger systems have lower payback times; the lowest payback time is about 3.5 years. The wastewater quality model was used to describe the dissolved oxygen (DO) and organic matter concentrations changes in the collection system. The model provides a framework for predicting pretreatment capability. Model results show that DO concentration is the limiting parameter for organic matter removal. Larger collection systems can provide more organic matter removal because they provide relatively longer retention times, and they offer the potential for greater DO reaeration. The model can also be used to identify environmental conditions in sewer pipelines, providing information for potential issues predication.