Archaeology or Crime Scene? Teeth Micro and Macro Structure Analysis as Dating Variable
General Material Designation
[Thesis]
First Statement of Responsibility
Vincenty, Jessica Anne
Subsequent Statement of Responsibility
Corthals, Angelique
.PUBLICATION, DISTRIBUTION, ETC
Name of Publisher, Distributor, etc.
City University of New York John Jay College of Criminal Justice
Date of Publication, Distribution, etc.
2020
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
186
DISSERTATION (THESIS) NOTE
Dissertation or thesis details and type of degree
M.S.
Body granting the degree
City University of New York John Jay College of Criminal Justice
Text preceding or following the note
2020
SUMMARY OR ABSTRACT
Text of Note
Simple methods to aid in the determination of forensic or archaeologic relevancy of skeletonized remains have been researched since the 1950s. With advances in microscopic imaging techniques and machine learning computer data analysis methods the relevancy of decontextualized, comingled remains has room for improvement. This thesis is a study done to pioneer a new approach to analyzing dental skeletal remains to determine forensic relevancy. Archaeological dental samples collected from the ancient city of Ur in modern day southern Iraq in addition to modern dental extractions were processed for scanning electron microscopy imaging. Archaeological and modern samples displayed different surface and dentinal tubule opening characteristics. The image files were then analyzed using a custom-built convolutional neural net model. The model's performance metrics indicate that the model made better than random predictions based on learned associations. Thus, the use of scanning electron microscopy and machine learning analysis techniques has potential in distinguishing archaeological dental samples from modern dental samples.