Corrosion Evaluation of 316L Stainless Steel Exposed to Cnt-Water Nanofluid
General Material Designation
[Thesis]
First Statement of Responsibility
Abdeen, Dana
Subsequent Statement of Responsibility
Hussien, Muataz
.PUBLICATION, DISTRIBUTION, ETC
Name of Publisher, Distributor, etc.
Hamad Bin Khalifa University (Qatar)
Date of Publication, Distribution, etc.
2019
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
179
DISSERTATION (THESIS) NOTE
Dissertation or thesis details and type of degree
Ph.D.
Body granting the degree
Hamad Bin Khalifa University (Qatar)
Text preceding or following the note
2019
SUMMARY OR ABSTRACT
Text of Note
CNTs-water nanofluids are new innovative materials that own extraordinary properties due to the presence of fine particles suspended in their base solutions. They have potential applications in many industrial sectors as they are expected to provide remarkable energy savings and emission reductions if used in cooling applications. Hence, it is important to study their corrosion behaviour to maintain equipment performance and ensure safety aspects. Three consequent corrosion tests were conducted on 316L stainless steel (SS) exposed to carbon nanotubes (CNTs) water-based nanofluids: open circuit test, polarization resistance test, and potentiodynamic scans. The electrochemical testing was performed at different CNTs loadings of 0.05, 0.1, 0.3 and 0.5 wt.% that were suspended in deionized water using the surfactant Gum Arabic (GA). Temperature effect was also examined with the same corrosion testing performed on the same SS exposed to 0.1 and 1.0 wt.% CNTs nanofluids at temperatures of 22, 40, 60 and 80°C. Different corrosion parameters were investigated, such as corrosion rate, corrosion potential, pitting potential, and anodic and cathodic Tafel slopes. Adsorption isotherm for CNTs adsorption on the surface of the metal and some thermodynamic properties of adsorption were found to help in proposing a mechanism for CNTs corrosion inhibition. It was observed that the SS tested in CNTs nanofluids presented low corrosion rates, which were comparable to those for tap water and lower than those for 3.5 wt.% NaCl solutions. CNTs had a blocking effect on increasing corrosion resistance as a black layer was physically adsorbed on the surface of the metal. A maximum inhibition of 61% was achieved in 0.1 wt.% CNTs nanofluid at room temperature. Further increase in the CNTs concentrations and in nanofluid' temperature showed to decrease the corrosion performance.