• Home
  • Advanced Search
  • Directory of Libraries
  • About lib.ir
  • Contact Us
  • History

عنوان
An integrated semantic-based framework for intelligent similarity measurement and clustering of microblogging posts

پدید آورنده
Alnajran, Noufa Abdulaziz

موضوع

رده

کتابخانه
Center and Library of Islamic Studies in European Languages

محل استقرار
استان: Qom ـ شهر: Qom

Center and Library of Islamic Studies in European Languages

تماس با کتابخانه : 32910706-025

NATIONAL BIBLIOGRAPHY NUMBER

Number
TLets772176

TITLE AND STATEMENT OF RESPONSIBILITY

Title Proper
An integrated semantic-based framework for intelligent similarity measurement and clustering of microblogging posts
General Material Designation
[Thesis]
First Statement of Responsibility
Alnajran, Noufa Abdulaziz

.PUBLICATION, DISTRIBUTION, ETC

Name of Publisher, Distributor, etc.
Manchester Metropolitan University
Date of Publication, Distribution, etc.
2019

DISSERTATION (THESIS) NOTE

Dissertation or thesis details and type of degree
Ph.D.
Body granting the degree
Manchester Metropolitan University
Text preceding or following the note
2019

SUMMARY OR ABSTRACT

Text of Note
Twitter, the most popular microblogging platform, is gaining rapid prominence as a source of information sharing and social awareness due to its popularity and massive user generated content. These include applications such as tailoring advertisement campaigns, event detection, trends analysis, and prediction of micro-populations. The aforementioned applications are generally conducted through cluster analysis of tweets to generate a more concise and organized representation of the massive raw tweets. However, current approaches perform traditional cluster analysis using conventional proximity measures, such as Euclidean distance. However, the sheer volume, noise, and dynamism of Twitter, impose challenges that hinder the efficacy of traditional clustering algorithms in detecting meaningful clusters within microblogging posts. The research presented in this thesis sets out to design and develop a novel short text semantic similarity (STSS) measure, named TREASURE, which captures the semantic and structural features of microblogging posts for intelligently predicting the similarities. TREASURE is utilised in the development of an innovative semantic-based cluster analysis algorithm (SBCA) that contributes in generating more accurate and meaningful granularities within microblogging posts. The integrated semantic-based framework incorporating TREASURE and the SBCA algorithm tackles both the problem of microblogging cluster analysis and contributes to the success of a variety of natural language processing (NLP) and computational intelligence research. TREASURE utilises word embedding neural network (NN) models to capture the semantic relationships between words based on their co-occurrences in a corpus. Moreover, TREASURE analyses the morphological and lexical structure of tweets to predict the syntactic similarities. An intrinsic evaluation of TREASURE was performed with reference to a reliable similarity benchmark generated through an experiment to gather human ratings on a Twitter political dataset. A further evaluation was performed with reference to the SemEval-2014 similarity benchmark in order to validate the generalizability of TREASURE. The intrinsic evaluation and statistical analysis demonstrated a strong positive linear correlation between TREASURE and human ratings for both benchmarks. Furthermore, TREASURE achieved a significantly higher correlation coefficient compared to existing state-of-the-art STSS measures. The SBCA algorithm incorporates TREASURE as the proximity measure. Unlike conventional partition-based clustering algorithms, the SBCA algorithm is fully unsupervised and dynamically determine the number of clusters beforehand. Subjective evaluation criteria were employed to evaluate the SBCA algorithm with reference to the SemEval-2014 similarity benchmark. Furthermore, an experiment was conducted to produce a reliable multi-class benchmark on the European Referendum political domain, which was also utilised to evaluate the SBCA algorithm. The evaluation results provide evidence that the SBCA algorithm undertakes highly accurate combining and separation decisions and can generate pure clusters from microblogging posts. The contributions of this thesis to knowledge are mainly demonstrated as: 1) Development of a novel STSS measure for microblogging posts (TREASURE). 2) Development of a new SBCA algorithm that incorporates TREASURE to detect semantic themes in microblogs. 3) Generating a word embedding pre-trained model learned from a large corpus of political tweets. 4) Production of a reliable similarity-annotated benchmark and a reliable multi-class benchmark in the domain of politics.

PERSONAL NAME - PRIMARY RESPONSIBILITY

Alnajran, Noufa Abdulaziz

CORPORATE BODY NAME - SECONDARY RESPONSIBILITY

Manchester Metropolitan University

ELECTRONIC LOCATION AND ACCESS

Electronic name
 مطالعه متن کتاب 

p

[Thesis]
276903

a
Y

Proposal/Bug Report

Warning! Enter The Information Carefully
Send Cancel
This website is managed by Dar Al-Hadith Scientific-Cultural Institute and Computer Research Center of Islamic Sciences (also known as Noor)
Libraries are responsible for the validity of information, and the spiritual rights of information are reserved for them
Best Searcher - The 5th Digital Media Festival