Includes bibliographical references (pages 135-136) and index.
CONTENTS NOTE
Text of Note
Preface -- Mathematical notation -- Chapter 1. Introduction to LADAR systems-- 1.1. Background -- 1.2. LADAR and RADAR fundamentals. 1.2.1. Heterodyne versus direct detection -- 1.3. LADAR range equation. 1.3.1. Laser transmitter models; 1.3.2. Atmospheric transmission; 1.3.3. Target reflectivity and angular dispersion; 1.3.4. Dispersion upon reflection; 1.3.5. LADAR receiver throughput and efficiency -- 1.4. Types of LADAR systems and applications. 1.4.1. Three-dimensional-imaging LADAR systems -- 1.5. Sources of noise in LADAR systems. 1.5.1. Photon counting noise; 1.5.2. Laser speckle noise; 1.5.3. Thermal noise; 1.5.4. Background noise -- 1.6. LADAR systems and models. 1.6.1. Computational model for the range equation and signal-to-noise ratio (SNR); 1.6.2. Avalanche photodiode -- 1.7. Problems.
Text of Note
Chapter 2. LADAR Waveform Models -- 2.1. Fourier transform. 2.1.1. Properties of the DFT; 2.1.2. Transforms of some useful functions -- 2.2. Laser pulse waveform models. 2.2.1. Gaussian pulse model; 2.2.2. Negative parabolic pulse model; 2.2.3. Hybrid pulse models; 2.2.4. Digital waveform models -- 2.3. Pulse/target surface interaction models -- 2.4. LADAR system clock frequency and ranging error -- 2.5. Waveform noise models. 2.5.1. Waveform noise sources introduced at the single-sample level; 2.5.2. Sampling criteria and the effect of aliasing on waveforms -- 2.6. Problems.
Text of Note
Chapter 3. Wave propagation models.-- 3.1. Rayleigh-Sommerfeld propagation -- 3.2. Free-space propagation -- 3.3. Atmospheric turbulence phase screen simulation -- 3.4. LADAR system point spread function -- 3.5. Problems.
Text of Note
Chapter 4. Detection and estimation theory applied to LADAR signal detection. -- 4.1. Simple binary hypothesis testing -- 4.2. Decision criteria -- 4.3. Detection methods using waveform data -- 4.4. Receiver operating characteristics -- 4.5. Range estimation. 4.5.1. Peak estimator; 4.5.2. Cross-correlation range estimator; 4.5.3. Leading-edge detectors -- 4.6. Range resolution and range accuracy -- 4.7. Problems.
Text of Note
Chapter 5. LADAR imaging systems -- 5.1. Single-pixel scanning imagers -- 5.2. Gated viewing imagers. 5.2.1. Design and modeling considerations -- 5.3. Staring or FLASH Imagers -- 5.4. Modeling 2D and 3D FLASH LADAR systems -- 5.5. Speckle mitigation for imaging LADAR systems -- References -- Index.
0
8
8
8
8
SUMMARY OR ABSTRACT
Text of Note
This text is designed to introduce engineers-in-training to the basic concepts and operation of 3D imaging LADAR systems. The book covers laser range equations; sources of noise in LADAR signals; LADAR waveforms; the effects of wavefront propagation on LADAR beams through optical systems and atmospheric turbulence; algorithms for detecting, ranging, and tracking targets; and comprehensive system simulation.