Includes bibliographical references (pages 107-113).
CONTENTS NOTE
Text of Note
Abstract -- 1. Introduction -- 2. Network utility maximization -- 3. Utility maximization algorithms -- 4. Congestion control protocols -- 5. Network stability -- 6. Game theory and resource allocation -- Conclusions -- Acknowledgments -- References.
0
SUMMARY OR ABSTRACT
Text of Note
We study how protocol design for various functionalities within a communication network architecture can be viewed as a distributed resource allocation problem. This involves understanding what resources are, how to allocate them fairly, and perhaps most importantly, how to achieve this goal in a distributed and stable fashion. We start with ideas of a centralized optimization framework and show how congestion control, routing and scheduling in wired and wireless networks can be thought of as fair resource allocation. We then move to the study of controllers that allow a decentralized solution of this problem. These controllers are the analytical equivalent of protocols in use on the Internet today, and we describe existing protocols as realizations of such controllers. The Internet is a dynamic system with feedback delays and flows that arrive and depart, which means that stability of the system cannot be taken for granted. We show how to incorporate stability into protocols, and thus, prevent undesirable network behavior. Finally, we consider a futuristic scenario where users are aware of the effects of their actions and try to game the system. We will see that the optimization framework is remarkably robust even to such gaming.