Cover -- Table of Contents -- 1 INTRODUCTION -- 1.1 OVERVIEW -- 1.2 WHAT IS LATENT DEMAND AND THE P.I.E.? -- 1.3 THE METHODOLOGY -- 1.3.1 Step 1. Product Definition and Data Collection -- 1.3.2 Step 2. Filtering and Smoothing -- 1.3.3 Step 3. Filling in Missing Values -- 1.3.4 Step 4. Varying Parameter, Non-linear Estimation -- 1.3.5 Step 5. Fixed-Parameter Linear Estimation -- 1.3.6 Step 6. Aggregation and Benchmarking -- 1.3.7 Step 7. Latent Demand Density: Allocating Across Cities -- 2 SUMMARY OF FINDINGS -- 2.1 THE WORLDWIDE MARKET POTENTIAL -- 3 AFRICA -- 3.1 EXECUTIVE SUMMARY -- 3.2 ALGERIA -- 3.3 ANGOLA -- 3.4 BENIN -- 3.5 BOTSWANA -- 3.6 BURKINA FASO -- 3.7 BURUNDI -- 3.8 CAMEROON -- 3.9 CAPE VERDE -- 3.10 CENTRAL AFRICAN REPUBLIC -- 3.11 CHAD -- 3.12 COMOROS -- 3.13 CONGO (FORMERLY ZAIRE) -- 3.14 COTE D'IVOIRE -- 3.15 DJIBOUTI -- 3.16 EGYPT -- 3.17 EQUATORIAL GUINEA -- 3.18 ETHIOPIA -- 3.19 GABON -- 3.20 GHANA -- 3.21 GUINEA -- 3.22 GUINEA-BISSAU -- 3.23 KENYA -- 3.24 LESOTHO -- 3.25 LIBERIA -- 3.26 LIBYA -- 3.27 MADAGASCAR -- 3.28 MALAWI -- 3.29 MALI -- 3.30 MAURITANIA -- 3.31 MAURITIUS -- 3.32 MOROCCO -- 3.33 MOZAMBIQUE -- 3.34 NAMIBIA -- 3.35 NIGER -- 3.36 NIGERIA -- 3.37 REPUBLIC OF CONGO -- 3.38 REUNION -- 3.39 RWANDA -- 3.40 SAO TOME E PRINCIPE -- 3.41 SENEGAL -- 3.42 SIERRA LEONE -- 3.43 SOMALIA -- 3.44 SOUTH AFRICA -- 3.45 SUDAN -- 3.46 SWAZILAND -- 3.47 TANZANIA -- 3.48 THE GAMBIA -- 3.49 TOGO -- 3.50 TUNISIA -- 3.51 UGANDA -- 3.52 WESTERN SAHARA -- 3.53 ZAMBIA -- 3.54 ZIMBABWE -- 4 ASIA & OCEANA -- 4.1 EXECUTIVE SUMMARY -- 4.2 AMERICAN SAMOA -- 4.3 AUSTRALIA -- 4.4 BANGLADESH -- 4.5 BHUTAN -- 4.6 BRUNEI -- 4.7 BURMA -- 4.8 CAMBODIA -- 4.9 CHINA -- 4.10 CHRISTMAS ISLAND -- 4.11 COOK ISLANDS -- 4.12 FIJI -- 4.13 FRENCH POLYNESIA -- 4.14 GUAM -- 4.15 HONG KONG -- 4.16 INDIA -- 4.17 INDONESIA -- 4.18 JAPAN -- 4.19 KIRIBATI -- 4.20 LAOS -- 4.21 MACAU -- 4.22 MALAYSIA -- 4.23 MALDIVES -- 4.24 MARSHALL ISLANDS -- 4.25 MICRONESIA FEDERATION -- 4.26 MONGOLIA -- 4.27 NAURU -- 4.28 NEPAL -- 4.29 NEW CALEDONIA -- 4.30 NEW ZEALAND -- 4.31 NIUE -- 4.32 NORFOLK ISLAND -- 4.33 NORTH KOREA -- 4.34 PALAU -- 4.35 PAPUA NEW GUINEA -- 4.36 PHILIPPINES -- 4.37 SEYCHELLES -- 4.38 SINGAPORE -- 4.39 SOLOMON ISLANDS -- 4.40 SOUTH KOREA -- 4.41 SRI LANKA -- 4.42 TAIWAN -- 4.43 THAILAND -- 4.44 THE NORTHERN MARIANA ISLAND -- 4.45 TOKELAU -- 4.46 TONGA -- 4.47 TUVALU -- 4.48 VANUATU -- 4.49 VIETNAM -- 4.50 WALLIS AND FUTUNA -- 4.51 WESTERN SAMOA -- 5 EUROPE -- 5.1 EXECUTIVE SUMMARY -- 5.2 ALBANIA -- 5.3 ANDORRA -- 5.4 AUSTRIA -- 5.5 BELARUS -- 5.6 BELGIUM -- 5.7 BOSNIA AND HERZEGOVINA -- 5.8 BULGARIA -- 5.9 CROATIA -- 5.10 CYPRUS -- 5.11 CZECH REPUBLIC -- 5.12 DENMARK -- 5.13 ESTONIA -- 5.14 FINLAND -- 5.15 FRANCE -- 5.16 GEORGIA -- 5.17 GERMANY -- 5.18 GREECE -- 5.19 HUNGARY -- 5.20 ICELAND -- 5.21.
0
SUMMARY OR ABSTRACT
Text of Note
This econometric study covers the world outlook for advertising for social media Web sites across more than 200 countries. For each year reported, estimates are given for the latent demand, or potential industry earnings (P.I.E.), for the country in question (in millions of U.S. dollars), the percent share the country is of the region and of the globe. These comparative benchmarks allow the reader to quickly gauge a country vis-à-vis others. Using econometric models which project fundamental economic dynamics within each country and across countries, latent demand estimates are created. This report does not discuss the specific players in the market serving the latent demand, nor specific details at the product level. The study also does not consider short-term cyclicalities that might affect realized sales. The study, therefore, is strategic in nature, taking an aggregate and long-run view, irrespective of the players or products involved. This study does not report actual sales data (which are simply unavailable, in a comparable or consistent manner in virtually all of the 230 countries of the world). This study gives, however, my estimates for the worldwide latent demand, or the P.I.E. for advertising for social media Web sites. It also shows how the P.I.E. is divided across the world's regional and national markets. For each country, I also show my estimates of how the P.I.E. grows over time (positive or negative growth). In order to make these estimates, a multi-stage methodology was employed that is often taught in courses on international strategic planning at graduate schools of business.