It is rarely possible to use an optimal classifier. Often the classifier used for a specific problem is an approximation of the optimal classifier. Methods are presented for evaluating the performance of an approximation in the model class of Bayesian Networks. Specifically for the approximation of class conditional independence a bound for the performance is sharpened. The class conditional independence approximation is connected to the minimum description length principle (MDL), which is connected to Jeffreys' prior through commonly used assumptions. One algorithm for unsupervised classification is presented and compared against other unsupervised classifiers on three data sets.