As a phloem-limited, intracellular bacterial pathogen, 'Candidatus Liberibacter asiaticus' (Las) has a significantly reduced genome and causes huanglongbing (HLB), a devastating disease of citrus worldwide. In this study, we characterized two novel autotransporter proteins of Las, and redesignated them as LasAI and LasAII in lieu of the previous names HyvI and HyvII. Proteins secreted by the type V secretion system (T5SS), known as autotransporters, are large extracellular virulence proteins localized to the bacterial poles. Bioinformatic analyses revealed that LasAI and LasAII share the structural features of an autotransporter family containing large repeats of a passenger domain and a unique C-terminal translocator domain. When fused to the GFP gene and expressed in E. coli, the LasAI C-terminus and the full length LasAII were localized to the bacterial poles, similar to other members of autotransporter family. Despite the absence of the signal peptide, LasAI was found to localize at the cell surface by immuno-dot blot using a monoclonal antibody against the partial LasAI protein. Its surface localization was also confirmed by the removal of the LasAI antigen using a proteinase K treatment of the intact bacterial cells. When co-inoculated with a P19 gene silencing suppressor and transiently expressed in tobacco leaves, the GFP-LasAI translocator targeted to the mitochondria. This is the first report that Las encodes novel autotransporters that target to mitochondria. These findings may lead to a better understanding of the pathogenesis of this intracellular "energy parasitic" bacterium, and to more efficient characterizing new molecular targets for HLB control.