Menu
Home
Advanced Search
Directory of Libraries
About lib.ir
Contact Us
History
ورود / ثبت نام
عنوان
Effects of explicit convection on global land-atmosphere coupling in the superparameterized CAM
پدید آورنده
Sun, J; Pritchard, MS
موضوع
رده
کتابخانه
Center and Library of Islamic Studies in European Languages
محل استقرار
استان:
Qom
ـ شهر:
Qom
تماس با کتابخانه :
32910706
-
025
NATIONAL BIBLIOGRAPHY NUMBER
Number
LA69n6m2n6
TITLE AND STATEMENT OF RESPONSIBILITY
Title Proper
Effects of explicit convection on global land-atmosphere coupling in the superparameterized CAM
General Material Designation
[Article]
First Statement of Responsibility
Sun, J; Pritchard, MS
SUMMARY OR ABSTRACT
Text of Note
© 2016. The Authors. Conventional global climate models are prone to producing unrealistic land-atmosphere coupling signals. Cumulus and convection parameterizations are natural culprits but the effect of bypassing them with explicitly resolved convection on global land-atmosphere coupling dynamics has not been explored systematically. We apply a suite of modern land-atmosphere coupling diagnostics to isolate the effect of cloud Superparameterization in the Community Atmosphere Model (SPCAM) v3.5, focusing on both the terrestrial segment (i.e., soil moisture and surface turbulent fluxes interaction) and atmospheric segment (i.e., surface turbulent fluxes and precipitation interaction) in the water pathway of the land-atmosphere feedback loop. At daily timescales, SPCAM produces stronger uncoupled terrestrial signals (negative sign) over tropical rainforests in wet seasons, reduces the terrestrial coupling strength in the Central Great Plain in American, and reverses the coupling sign (from negative to positive) over India in the boreal summer season-all favorable improvements relative to reanalysis-forced land modeling. Analysis of the triggering feedback strength (TFS) and amplification feedback strength (AFS) shows that SPCAM favorably reproduces the observed geographic patterns of these indices over North America, with the probability of afternoon precipitation enhanced by high evaporative fraction along the eastern United States and Mexico, while conventional CAM does not capture this signal. We introduce a new diagnostic called the Planetary Boundary Layer (PBL) Feedback Strength (PFS), which reveals that SPCAM exhibits a tight connection between the responses of the lifting condensation level, the PBL height, and the rainfall triggering to surface turbulent fluxes; a triggering disconnect is found in CAM.
SET
Date of Publication
2016
Title
UC Irvine
ELECTRONIC LOCATION AND ACCESS
Electronic name
مطالعه متن کتاب
[Article]
275578
a
Y
Proposal/Bug Report
×
Proposal/Bug Report
×
Warning!
Enter The Information Carefully
Error Report
Proposal