Engineering Biodegradable and Biocompatible Bio-ionic Liquid Conjugated Hydrogels with Tunable Conductivity and Mechanical Properties.
General Material Designation
[Article]
First Statement of Responsibility
Noshadi, Iman; Walker, Brian W; Portillo-Lara, Roberto; Shirzaei Sani, Ehsan; Gomes, Nayara; Aziziyan, Mohammad Reza; Annabi, Nasim
SUMMARY OR ABSTRACT
Text of Note
Conventional methods to engineer electroconductive hydrogels (ECHs) through the incorporation of conductive nanomaterials and polymers exhibit major technical limitations. These are mainly associated with the cytotoxicity, as well as poor solubility, processability, and biodegradability of their components. Here, we describe the engineering of a new class of ECHs through the functionalization of non-conductive polymers with a conductive choline-based bio-ionic liquid (Bio-IL). Bio-IL conjugated hydrogels exhibited a wide range of highly tunable physical properties, remarkable in vitro and in vivo biocompatibility, and high electrical conductivity without the need for additional conductive components. The engineered hydrogels could support the growth and function of primary cardiomyocytes in both two dimentinal (2D) and three dimensional (3D) cultures in vitro. Furthermore, they were shown to be efficiently biodegraded and possess low immunogenicity when implanted subcutaneously in rats. Taken together, our results suggest that Bio-IL conjugated hydrogels could be implemented and readily tailored to different biomedical and tissue engineering applications.