• Home
  • Advanced Search
  • Directory of Libraries
  • About lib.ir
  • Contact Us
  • History

عنوان
Predicting plug loads with occupant count data through a deep learning approach

پدید آورنده
Wang, Z; Hong, T; Piette, MA

موضوع

رده

کتابخانه
Center and Library of Islamic Studies in European Languages

محل استقرار
استان: Qom ـ شهر: Qom

Center and Library of Islamic Studies in European Languages

تماس با کتابخانه : 32910706-025

NATIONAL BIBLIOGRAPHY NUMBER

Number
LA26w603s8

TITLE AND STATEMENT OF RESPONSIBILITY

Title Proper
Predicting plug loads with occupant count data through a deep learning approach
General Material Designation
[Article]
First Statement of Responsibility
Wang, Z; Hong, T; Piette, MA

SUMMARY OR ABSTRACT

Text of Note
© 2019 Elsevier Ltd Predictive control has gained increasing attention for its ability to reduce energy consumption and improve occupant comfort in buildings. The plug loads prediction is a key component for the predictive building controls, as plug loads is a major source of internal heat gains in buildings. This study proposed a novel method to apply the Long-Short-Term-Memory (LSTM) Network, a special form of Recurrent Neural Network, to predict plug loads. The occupant count and the time have been confirmed to drive the plug load profile and thus selected as the features for the plug load prediction. The LSTM network was trained and tested with ground truth occupant count data collected from a real office building in Berkeley, California. Results from the LSTM network markedly improve the prediction accuracy compared with traditional linear regression methods and the classical Artificial Neural Network. 95% of 1-h predictions from LSTM network are within ±1 kW of the actual plug loads, given the average plug loads during the office hour is 8.6 kW. The CV(RMSE) of the predicted plug load is 11% for the next hour, and 20% for the next 8 h. Lastly, we compared four prediction approaches with the office building we monitored: LSTM vs. ARIMA, with occupant counts vs. without occupant counts. It was found, the prediction error of the LSTM approach is around 4% less than the ARIMA approach. Using occupant counts as an exogenous input could further reduce the prediction error by 5%-6%. The findings of this paper could shed light on the plug load prediction for building control optimizations such as model-predictive control.

SET

Date of Publication
2019
Title
Lawrence Berkeley National Laboratory

ELECTRONIC LOCATION AND ACCESS

Electronic name
 مطالعه متن کتاب 

[Article]
275578

a
Y

Proposal/Bug Report

Warning! Enter The Information Carefully
Send Cancel
This website is managed by Dar Al-Hadith Scientific-Cultural Institute and Computer Research Center of Islamic Sciences (also known as Noor)
Libraries are responsible for the validity of information, and the spiritual rights of information are reserved for them
Best Searcher - The 5th Digital Media Festival