• Home
  • Advanced Search
  • Directory of Libraries
  • About lib.ir
  • Contact Us
  • History
  • ورود / ثبت نام

عنوان
Mevalonate Cascade Inhibition by Simvastatin Induces the Intrinsic Apoptosis Pathway via Depletion of Isoprenoids in Tumor Cells.

پدید آورنده
Alizadeh, Javad; Zeki, Amir A; Mirzaei, Nima; Tewary, Sandipan; Rezaei Moghadam, Adel; Glogowska, Aleksandra; Nagakannan, Pandian; Eftekharpour, Eftekhar; Wiechec, Emilia; Gordon, Joseph W; Xu, Fred Y; Field, Jared T; Yoneda, Ken Y; Kenyon, Nicholas J; Hashemi, Mohammad; Hatch, Grant M; et al.

موضوع

رده

کتابخانه
Center and Library of Islamic Studies in European Languages

محل استقرار
استان: Qom ـ شهر: Qom

Center and Library of Islamic Studies in European Languages

تماس با کتابخانه : 32910706-025

NATIONAL BIBLIOGRAPHY NUMBER

Number
LA87z4w5n7

TITLE AND STATEMENT OF RESPONSIBILITY

Title Proper
Mevalonate Cascade Inhibition by Simvastatin Induces the Intrinsic Apoptosis Pathway via Depletion of Isoprenoids in Tumor Cells.
General Material Designation
[Article]
First Statement of Responsibility
Alizadeh, Javad; Zeki, Amir A; Mirzaei, Nima; Tewary, Sandipan; Rezaei Moghadam, Adel; Glogowska, Aleksandra; Nagakannan, Pandian; Eftekharpour, Eftekhar; Wiechec, Emilia; Gordon, Joseph W; Xu, Fred Y; Field, Jared T; Yoneda, Ken Y; Kenyon, Nicholas J; Hashemi, Mohammad; Hatch, Grant M; et al.

SUMMARY OR ABSTRACT

Text of Note
The mevalonate (MEV) cascade is responsible for cholesterol biosynthesis and the formation of the intermediate metabolites geranylgeranylpyrophosphate (GGPP) and farnesylpyrophosphate (FPP) used in the prenylation of proteins. Here we show that the MEV cascade inhibitor simvastatin induced significant cell death in a wide range of human tumor cell lines, including glioblastoma, astrocytoma, neuroblastoma, lung adenocarcinoma, and breast cancer. Simvastatin induced apoptotic cell death via the intrinsic apoptotic pathway. In all cancer cell types tested, simvastatin-induced cell death was not rescued by cholesterol, but was dependent on GGPP- and FPP-depletion. We confirmed that simvastatin caused the translocation of the small Rho GTPases RhoA, Cdc42, and Rac1/2/3 from cell membranes to the cytosol in U251 (glioblastoma), A549 (lung adenocarcinoma) and MDA-MB-231(breast cancer). Simvastatin-induced Rho-GTP loading significantly increased in U251 cells which were reversed with MEV, FPP, GGPP. In contrast, simvastatin did not change Rho-GTP loading in A549 and MDA-MB-231. Inhibition of geranylgeranyltransferase I by GGTi-298, but not farnesyltransferase by FTi-277, induced significant cell death in U251, A549, and MDA-MB-231. These results indicate that MEV cascade inhibition by simvastatin induced the intrinsic apoptosis pathway via inhibition of Rho family prenylation and depletion of GGPP, in a variety of different human cancer cell lines.

SET

Date of Publication
2017
Title
UC Davis

ELECTRONIC LOCATION AND ACCESS

Electronic name
 مطالعه متن کتاب 

[Article]
275578

a
Y

Proposal/Bug Report

Warning! Enter The Information Carefully
Send Cancel
This website is managed by Dar Al-Hadith Scientific-Cultural Institute and Computer Research Center of Islamic Sciences (also known as Noor)
Libraries are responsible for the validity of information, and the spiritual rights of information are reserved for them
Best Searcher - The 5th Digital Media Festival