• Home
  • Advanced Search
  • Directory of Libraries
  • About lib.ir
  • Contact Us
  • History

عنوان
Accurate temperature sensing and efficient dynamic thermal management in MPSoCs

پدید آورنده
Sharifi, Shervin

موضوع

رده

کتابخانه
Center and Library of Islamic Studies in European Languages

محل استقرار
استان: Qom ـ شهر: Qom

Center and Library of Islamic Studies in European Languages

تماس با کتابخانه : 32910706-025

NATIONAL BIBLIOGRAPHY NUMBER

Number
TL2dx8s10z

LANGUAGE OF THE ITEM

.Language of Text, Soundtrack etc
انگلیسی

TITLE AND STATEMENT OF RESPONSIBILITY

Title Proper
Accurate temperature sensing and efficient dynamic thermal management in MPSoCs
General Material Designation
[Thesis]
First Statement of Responsibility
Sharifi, Shervin

.PUBLICATION, DISTRIBUTION, ETC

Name of Publisher, Distributor, etc.
UC San Diego
Date of Publication, Distribution, etc.
2011

DISSERTATION (THESIS) NOTE

Body granting the degree
UC San Diego
Text preceding or following the note
2011

SUMMARY OR ABSTRACT

Text of Note
Constant increase in performance demands, more aggressive technology scaling and higher transistor integration capacity result in continuously increasing power density and temperature in multi-processor System-on-Chip (SoC) devices. Dynamic thermal management (DTM) techniques try to avoid thermal violations by enabling the chip to control its temperature at runtime. To do this, accurate runtime temperature information is necessary, which is typically obtained from on-die thermal sensors. Sensor accuracy can be significantly affected by factors such as sensor degradation and failure, limitations on the number of sensors and their placement, dynamic change of hotspot locations, etc. To improve the accuracy of temperature sensing, which directly affects the efficiency of DTM, two techniques are proposed. Accurate direct temperature sensing is a design time technique for optimum allocation and placement of on-chip thermal sensors. It targets the inaccuracies due to sensor placement and can reduce the number of thermal sensors by 16% on average. Accurate indirect temperature sensing is a runtime technique which targets the sources of inaccuracy which cannot be addressed at design time. Based on inaccurate readings from a few noisy sensors, this method accurately estimates the temperature at any location on the die. It also reduces mean absolute error and standard deviation of the errors by up to an order of magnitude. DTM efficiency can be improved by predicting changes in temperature and proactively controlling them, which reduces DTM's response time and performance overhead. We propose a temperature prediction technique called Tempo to accurately evaluate the thermal impact of DTM actions. Compared to previous temperature prediction techniques, Tempo can reduce the maximum prediction error by up to an order of magnitude. Heterogeneous MPSoCs which integrate various types of cores are particularly at a disadvantage from a thermal perspective, due to the inherent imbalance in power density distribution. We present PROMETHEUS, a thermal management framework which systematically performs proactive temperature-aware scheduling for heterogeneous (and homogeneous) MPSoCs. PROMETHEUS framework provides two alternative temperature-aware scheduling techniques: TempoMP which uses online optimization for optimal power state assignment to the cores, and a more scalable technique TemPrompt, which is based on a heuristics and has a lower overhead

PERSONAL NAME - PRIMARY RESPONSIBILITY

Sharifi, Shervin

CORPORATE BODY NAME - SECONDARY RESPONSIBILITY

UC San Diego

ELECTRONIC LOCATION AND ACCESS

Electronic name
 مطالعه متن کتاب 

p

[Thesis]
276903

a
Y

Proposal/Bug Report

Warning! Enter The Information Carefully
Send Cancel
This website is managed by Dar Al-Hadith Scientific-Cultural Institute and Computer Research Center of Islamic Sciences (also known as Noor)
Libraries are responsible for the validity of information, and the spiritual rights of information are reserved for them
Best Searcher - The 5th Digital Media Festival