Understanding and improving the mechanical stability of semiconducting polymers for flexible and stretchable electronics
General Material Designation
[Thesis]
First Statement of Responsibility
Printz, Adam
Subsequent Statement of Responsibility
Lipomi, Darren J
.PUBLICATION, DISTRIBUTION, ETC
Date of Publication, Distribution, etc.
2015
DISSERTATION (THESIS) NOTE
Body granting the degree
Lipomi, Darren J
Text preceding or following the note
2015
SUMMARY OR ABSTRACT
Text of Note
Polymeric semiconductors offer the promise of low-cost, printable, and mechanically robust electronic devices for use in outdoor, portable, and wearable applications such as organic photovoltaics, biosensors, and electronic skins. However, many organic semiconductors are unable to accommodate the mechanical stresses these applications require, and it is therefore important to understand the factors and parameters that govern the mechanical stability of these materials. Chapter 1 provides a gentle introduction to the electronic and mechanical properties relevant to flexible and stretchable organic semiconductor devices. The idea of inherent competition between electronic performance and mechanical robustness is explored. Chapter 2 investigates the inherent competition between good electronic performance and mechanical robustness in poly(3-alkylthiophene)s. A key finding is a critical alkyl side-chain length that allows for good electronic performance and mechanical compliance. Chapter 3 and Appendix A are further studies on the properties of poly(3-alkylthiophene)s with side-chains close to the critical length to gain better understanding of the transition from good electronic properties and poor mechanical properties to poor electronic properties and good mechanical properties. Chapter 4 and Appendix B detail the effects on mechanical and electronic properties of statistical incorporation of unlike monomer into a low-bandgap polymer backbone in an effort to disrupt aggregation and improve mechanical compliance. Chapter 5 explores how the extent of molecular mixing of polythiophenes and fullerenes-materials common in organic photovoltaics-affects their mechanical properties. Chapter 6 describes the invention of a new technique to determine the yield point of thin films. A dependence on the alkyl-side chain length is observed, as well as a critical film thickness below which the yield point increases substantially. In Chapter 7, the weakly interacting H-aggregate model-a spectroscopic model which estimates the quantity and quality of aggregates in a polymer film-is used to determine how the microstructure of a semiconducting polymer thin film evolves with repetitive strain. Samples strained below the yield point undergo little microstructural evolution, while samples strained above the yield point exhibit a significant decrease in aggregation and tensile modulus. Appendix C describes the invention of an environmentally-friendly fabrication technique, abrasion lithography.