Construction of wavelets through Walsh functions /
General Material Designation
[Book]
First Statement of Responsibility
Yu. A. Farkov, Pammy Manchanda, Abul Hasan Siddiqi.
.PUBLICATION, DISTRIBUTION, ETC
Place of Publication, Distribution, etc.
Singapore :
Name of Publisher, Distributor, etc.
Springer,
Date of Publication, Distribution, etc.
[2019]
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
1 online resource
SERIES
Series Title
Industrial and applied mathematics
GENERAL NOTES
Text of Note
8 Wavelets Associated with Nonuniform Multiresolution Analysis on Positive Half Line
INTERNAL BIBLIOGRAPHIES/INDEXES NOTE
Text of Note
Includes bibliographical references and index.
CONTENTS NOTE
Text of Note
Intro; Preface; References; Contents; About the Authors; Introduction; References; 1 Introduction to Walsh Analysis and Wavelets; 1.1 Walsh Functions; 1.2 Walsh-Fourier Transform; 1.3 Haar Functions and Its Relationship with Walsh Functions; 1.4 Walsh-Type Wavelet Packets; 1.5 Wavelet Analysis; 1.5.1 Continuous Wavelet Transform; 1.5.2 Discrete Wavelet System; 1.5.3 Multiresolution Analysis; 1.6 Wavelets with Compact Support; 1.7 Exercises; References; 2 Walsh-Fourier Series; 2.1 Walsh-Fourier Coefficients; 2.1.1 Estimation of Walsh-Fourier Coefficients
Text of Note
2.1.2 Transformation of Walsh-Fourier Coefficients2.2 Convergence of Walsh-Fourier Series; 2.2.1 Summability in Homogeneous Banach Spaces; 2.3 Approximation by Transforms of Walsh-Fourier Series; 2.3.1 Approximation by Césaro Means of Walsh-Fourier Series; 2.3.2 Approximation by Nörlund Means of Walsh-Fourier Series in Lp Spaces; 2.3.3 Approximation by Nörlund Means in Dyadic Homogeneous Banach Spaces and Hardy Spaces; 2.4 Applications to Signal and Image Processing; 2.4.1 Image Representation and Transmission; 2.4.2 Data Compression; 2.4.3 Quantization of Walsh Coefficients
Text of Note
2.4.4 Signal Processing2.4.5 ECG Analysis; 2.4.6 EEG Analysis; 2.4.7 Speech Processing; 2.4.8 Pattern Recognition; 2.5 Exercises; References; 3 Haar-Fourier Analysis; 3.1 Haar System and Its Generalization; 3.2 Haar Fourier Series; 3.3 Haar System as Basis in Function Spaces; 3.4 Non-uniform Haar Wavelets; 3.5 Generalized Haar Wavelets and Frames; 3.6 Applications of Haar Wavelets; 3.6.1 Applications to Solutions of Initial and Boundary Value Problems; 3.6.2 Applications to Solutions of Integral Equations; 3.7 Exercises; References
Text of Note
4 Construction of Dyadic Wavelets and Frames Through Walsh Functions4.1 Preliminary; 4.2 Orthogonal Wavelets and MRA in L2(mathbbR+); 4.3 Orthogonal Wavelets with Compact Support on mathbbR+; 4.4 Estimates of the Smoothness of the Scaling Functions; 4.5 Approximation Properties of Dyadic Wavelets; 4.6 Exercise; References; 5 Orthogonal and Periodic Wavelets on Vilenkin Groups; 5.1 Multiresolution Analysis on Vilenkin Groups; 5.2 Compactly Supported Orthogonal p-Wavelets; 5.3 Periodic Wavelets on Vilenkin Groups; 5.4 Periodic Wavelets Related to the Vilenkin-Christenson Transform
Text of Note
5.5 Application to the Coding of Fractal FunctionsReferences; 6 Haar-Vilenkin Wavelet; 6.1 Introduction; 6.2 Haar-Vilenkin Wavelets; 6.2.1 Haar-Vilenkin Mother Wavelet; 6.3 Approximation by Haar-Vilenkin Wavelets; 6.4 Covergence Theorems; 6.5 Haar-Vilenkin Coefficients; 6.6 Exercises; References; 7 Construction Biorthogonal Wavelets and Frames; 7.1 Biorthogonal Wavelets on R+; 7.2 Biorthogonal Wavelets on Vilenkin Groups; 7.3 Construction of Biorthogonal Wavelets on The Vilenkin Group; 7.4 Frames on Vilenkin Group; 7.5 Application to Image Processing; References
0
8
8
8
8
SUMMARY OR ABSTRACT
Text of Note
This book focuses on the fusion of wavelets and Walsh analysis, which involves non-trigonometric function series (or Walsh-Fourier series). The primary objective of the book is to systematically present the basic properties of non-trigonometric orthonormal systems such as the Haar system, Haar-Vilenkin system, Walsh system, wavelet system and frame system, as well as updated results on the book's main theme. Based on lectures that the authors presented at several international conferences, the notions and concepts introduced in this interdisciplinary book can be applied to any situation where wavelets and their variants are used. Most of the applications of wavelet analysis and Walsh analysis can be tried for newly constructed wavelets. Given its breadth of coverage, the book offers a valuable resource for theoreticians and those applying mathematics in diverse areas. It is especially intended for graduate students of mathematics and engineering and researchers interested in applied analysis.