Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Authors -- 1. Introduction -- 1.1 Applications of Advanced Structural Fiber-Reinforced Polymer Composites -- 1.1.1 Aerospace -- 1.1.2 Automotive and Railways -- 1.1.3 Marine -- 1.1.4 Infrastructure -- 1.1.5 Some Other Special Applications -- 1.1.5.1 NASA and Boeing Build and Test All-Composite Cryogenic Tank -- 1.1.5.2 Liquefied Petroleum Gas Cylinders -- 1.1.5.3 Wind Turbine -- 1.2 Constituents of Fiber-Reinforced Polymer Composites -- 1.2.1 Polymer Matrix -- 1.2.1.1 Thermosetting Matrix -- 1.2.1.2 Thermoplastic Matrix -- 1.2.2 Reinforcements -- 1.2.2.1 Glass Fibers -- 1.2.2.2 Carbon Fibers -- 1.2.2.3 Aramid Fibers -- 1.2.2.4 Boron Fiber -- 1.2.3 Interface -- 1.2.4 Sizing -- 1.3 Fabrication Techniques of Fiber-Reinforced Polymer Composites -- 1.3.1 Hand Lay-Up Method -- 1.3.2 Spray-Up Method -- 1.3.3 Pultrusion -- 1.3.4 Filament Winding -- 1.3.5 Resin Transfer Molding -- 1.4 Different In-Service Environments -- 1.4.1 Environmental Factors -- 1.4.1.1 Temperature -- 1.4.1.2 Water or Moisture Absorption (Humidity) -- 1.4.1.3 Ultraviolet Radiation and Other High Energy Radiations -- 1.4.1.4 Low Earth Orbit -- 1.4.1.5 Acid Rain -- 1.4.2 In-Situ Environments during Various Applications of Fiber-Reinforced Polymer Composites -- 1.4.2.1 Ageing of Composites in Marine Applications -- 1.4.2.2 Ageing of Composites in Underwater Applications -- 1.4.2.3 Ageing of Composites in Aerospace Applications -- 1.4.2.4 Ageing of Composites in Oil and Chemical Industries -- 1.4.2.5 Ageing of Composites in Structural Applications -- References -- 2. Micro- and Macrocharacterization Techniques -- 2.1 Introduction -- 2.2 Static Mechanical Characterization -- 2.2.1 Tensile Test -- 2.2.2 Short Beam Shear Test -- 2.2.3 Flexural Test -- 2.3 Dynamic Mechanical Analysis.
Text of Note
2.4 Scanning Electron Microscope -- 2.5 Atomic Force Microscopy -- 2.6 Differential Scanning Calorimetry Analysis -- 2.7 Fourier Transform Infrared Spectroscopy Analysis -- References -- 3. Temperature-Induced Degradations in Polymer Matrix Composites -- 3.1 In-Situ Temperature Mechanical Performance -- 3.1.1 Elevated Temperature Mechanical Performance -- 3.1.2 Low and Cryogenic Mechanical Performance -- 3.2 Effects of Thermal Cycling on Mechanical Behavior of Fiber-Reinforced Polymer Composites -- 3.2.1 Thermal Shock Cycling -- 3.2.2 Thermal Fatigue -- 3.3 Effects of Fire Exposure on Fiber-Reinforced Polymer Composites -- References -- 4. Moisture-Dominated Failure in Polymer Matrix Composites -- 4.1 Background -- 4.2 Theories and Models of Moisture Uptake Kinetics -- 4.2.1 Fick's Model -- 4.2.2 Langmuirian Diffusion Model -- 4.2.3 Hindered Diffusion Model -- 4.2.4 Dual-Stage Diffusion Model -- 4.3 Factors Affecting Moisture Uptake Kinetics in Fiber-Reinforced Polymer Composites -- 4.3.1 Effect of Fiber -- 4.3.2 Effect of Polymer Matrix -- 4.3.3 Effect of Interface -- 4.3.4 Effect of Temperature -- 4.4 Fundamentals of Moisture-Induced Degradation Mechanisms -- 4.5 Effect of Moisture on Interfacial Durability of Fiber-Reinforced Polymer Composites -- References -- 5. Hygrothermal-Dominated Failure in Polymer Matrix Composites -- 5.1 Introduction -- 5.2 Freezing of Absorbed Moisture -- 5.3 Effect of Loading Rate -- 5.4 Effect of Hygrothermal Cycling -- 5.4.1 Thermal Fatigue -- 5.4.2 Relative Humidity Cycling -- 5.5 Summary -- References -- 6. Low Earth Orbit Space Environmental- and Other Environmental-Dominated Failure in Polymer Matrix Composites -- 6.1 Effect of Ultraviolet Radiations on Fiber-Reinforced Polymers -- 6.2 Effects of Vacuum Thermal Cycling -- 6.3 Irradiation Induced Damages -- 6.4 Effect of Atomic Oxygen.
Text of Note
6.5 Low Earth Orbit Space Environments -- References -- 7. Loading Rate Sensitivity of Polymer Matrix Composites -- 7.1 Introduction -- 7.2 Mechanical Properties of Fiber-Reinforced Polymer Composites in Tensile Loading under Different Strain Rates -- 7.3 Mechanical Properties of Fiber-Reinforced Polymer Composites in Compressive Loading under Different Strain Rates -- 7.4 In-Plane Shear Behavior at Different Strain Rates -- 7.5 Loading Rate Sensitivity of Environmentally Conditioned Fiber-Reinforced Polymer Composites -- References -- 8. Environmental Durability of Fiber-Reinforced Polymer Nanocomposites -- 8.1 Introduction -- 8.2 Reinforcement Effect of Carbon Nanotube in Polymeric Materials -- 8.2.1 Why Nanofiller Reinforcement? -- 8.2.2 Nanofiller/Polymer Interaction -- 8.2.3 Nanofiller/Polymer Interface Engineering -- 8.2.3.1 Chemical Functionalization -- 8.2.3.2 Physical Functionalization -- 8.2.4 Degree of Dispersion -- 8.3 Fabrication of Polymer Nanocomposites with Carbon Nanotubes -- 8.3.1 Thermoplastic Polymer-Based Nanocomposites -- 8.3.1.1 Melt Processing of Nanocomposites -- 8.3.1.2 Injection Molding -- 8.3.1.3 Single-Screw Melt Extrusion -- 8.3.1.4 Solution Processing of Nanocomposites -- 8.3.2 Thermosetting Polymer-Based Nanocomposites -- 8.3.2.1 Ultrasonic Mixing -- 8.3.2.2 Mechanical Mixing -- 8.3.2.3 Calendering -- 8.4 Fabrication of Carbon Nanotube-Embedded Fiber-Reinforced Polymer Composites -- 8.4.1 Thermoplastic Polymer-Based Nanophased Fiber-Reinforced Polymer Composites -- 8.4.2 Thermosetting Polymer-Based Nanophased Fiber-Reinforced Polymer Composites -- 8.5 Mechanical Performance of Carbon Nanotube-Embedded Polymer Composites -- 8.5.1 Theories and Micromechanisms for Improved Mechanical Performances of Carbon Nanotube-Embedded Polymeric Composites.
Text of Note
8.6 Environmental Sensitivity of Carbon Nanotube-Enhanced Polymer Composites -- 8.6.1 Temperature -- 8.6.1.1 Cryogenic and Low Temperature Performance -- 8.6.1.2 Elevated Temperature Performance -- 8.6.1.3 Nonequilibrium Thermal Loadings -- 8.6.2 Hydrothermal and Hygrothermal Exposure -- 8.6.2.1 Kinetics of Water Ingression -- 8.6.2.2 Mechanical and Thermomechanical Performance after Moisture Ingression -- 8.6.3 Ultraviolet and Other High-Energy Irradiation -- 8.6.4 Effect of Atomic Oxygen -- 8.6.5 Exposure under Low Earth Orbit Space Environment -- 8.6.6 Exposure to Electromagnetic and Microwave Radiation -- 8.7 Summary -- References -- 9. Design for Improved Damage Resistance and Damage Tolerance of Polymer Matrix Composites -- 9.1 Introduction -- 9.2 Methods to Determine Damage Tolerance -- 9.2.1 Mode I Fracture Test -- 9.2.2 Mode II Fracture Test -- 9.2.3 Mode III Fracture Test -- 9.2.4 Compression after Impact -- 9.3 Techniques for Improving Damage Tolerance -- 9.3.1 Toughening of Matrix -- 9.3.2 Interleaving -- 9.3.3 Sequential Stacking -- 9.3.4 Interply Hybridization -- 9.3.5 Through-the-Thickness Reinforcement -- 9.3.6 Fiber Surface Modification -- 9.3.7 Fiber Architecture -- 9.3.8 Nanocomposite -- References -- Index.
0
8
8
8
SUMMARY OR ABSTRACT
Text of Note
"In the realm of fibre reinforced polymer (FRP) composite materials, the role of fibre/polymer interface/interphasein the overall properties of composite is widely acknowledged. The book will provide critical information regarding the in-service environmental damage and degradation studies of FRP composites. The readers will be able to identify the possible superior advantages and limitations of FRP composites in various simple and super critical applications. Further emphasis will be given on the identification of various failure micro-mechanisms leading to unprecedented failure in different harsh and hostile environment. The book will include the relevant case studies."--Provided by publisher.