Thomas Bartz-Beielstein, Bogdan Filipič, Peter Korošec, El-Ghazali Talbi, editors.
.PUBLICATION, DISTRIBUTION, ETC
Place of Publication, Distribution, etc.
Cham :
Name of Publisher, Distributor, etc.
Springer,
Date of Publication, Distribution, etc.
2020.
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
1 online resource (xiii, 291 pages) :
Other Physical Details
illustrations (some color)
SERIES
Series Title
Studies in computational intelligence ;
Volume Designation
volume 833
CONTENTS NOTE
Text of Note
Infill Criteria for Multiobjective Bayesian Optimization -- Many-Objective Optimization with Limited Computing Budget -- Multi-Objective Bayesian Optimization for Engineering Simulation -- Automatic Configuration of Multi-Objective Optimizers and Multi-Objective Configuration -- Optimization and Visualization in Many-Objective Space Trajectory Design -- Simulation Optimization through Regression or Kriging Metamodels -- Towards Better Integration of Surrogate Models and Optimizers -- Surrogate-Assisted Evolutionary Optimization of Large Problems -- Overview and Comparison of Gaussian Process-Based Surrogate Models for Mixed Continuous and Discrete Variables: Application on Aerospace Design Problems -- Open Issues in Surrogate-Assisted Optimization -- A Parallel Island Model for Hypervolume-Based Many-Objective Optimization -- Many-Core Branch-and-Bound for GPU Accelerators and MIC Coprocessors.
0
SUMMARY OR ABSTRACT
Text of Note
This book presents the state of the art in designing high-performance algorithms that combine simulation and optimization in order to solve complex optimization problems in science and industry, problems that involve time-consuming simulations and expensive multi-objective function evaluations. As traditional optimization approaches are not applicable per se, combinations of computational intelligence, machine learning, and high-performance computing methods are popular solutions. But finding a suitable method is a challenging task, because numerous approaches have been proposed in this highly dynamic field of research. Thats where this book comes in: It covers both theory and practice, drawing on the real-world insights gained by the contributing authors, all of whom are leading researchers. Given its scope, if offers a comprehensive reference guide for researchers, practitioners, and advanced-level students interested in using computational intelligence and machine learning to solve expensive optimization problems.