5.9. Partial IMU -- References -- ch. 6 Dead Reckoning, Attitude, and Height Measurement -- 6.1. Attitude Measurement -- 6.1.1. Magnetic Heading -- 6.1.2. Marine Gyrocompass -- 6.1.3. Strapdown Yaw-Axis Gyro -- 6.1.4. Heading from Trajectory -- 6.1.5. Integrated Heading Determination -- 6.1.6. Accelerometer Leveling and Tilt Sensors -- 6.1.7. Horizon Sensing -- 6.1.8. Attitude and Heading Reference System -- 6.2. Height and Depth Measurement -- 6.2.1. Barometric Altimeter -- 6.2.2. Depth Pressure Sensor -- 6.2.3. Radar Altimeter -- 6.3. Odometry -- 6.3.1. Linear Odometry -- 6.3.2. Differential Odometry -- 6.3.3. Integrated Odometry and Partial IMU -- 6.4. Pedestrian Dead Reckoning Using Step Detection -- 6.5. Doppler Radar and Sonar -- 6.6. Other Dead-Reckoning Techniques -- 6.6.1. Correlation-Based Velocity Measurement -- 6.6.2. Air Data -- 6.6.3. Ship's Speed Log -- References -- ch. 7 Principles of Radio Positioning -- 7.1. Radio Positioning Configurations and Methods -- 7.1.1. Self-Positioning and Remote Positioning -- 7.1.2. Relative Positioning -- 7.1.3. Proximity -- 7.1.4. Ranging -- 7.1.5. Angular Positioning -- 7.1.6. Pattern Matching --
Text of Note
7.1.7. Doppler Positioning -- 7.2. Positioning Signals -- 7.2.1. Modulation Types -- 7.2.2. Radio Spectrum -- 7.3. User Equipment -- 7.3.1. Architecture -- 7.3.2. Signal Timing Measurement -- 7.3.3. Position Determination from Ranging -- 7.4. Propagation, Error Sources, and Positioning Accuracy -- 7.4.1. Ionosphere, Troposphere, and Surface Propagation Effects -- 7.4.2. Attenuation, Reflection, Multipath, and Diffraction -- 7.4.3. Resolution, Noise, and Tracking Errors -- 7.4.4. Transmitter Location and Timing Errors -- 7.4.5. Effect of Signal Geometry -- References -- ch. 8 GNSS: Fundamentals, Signals, and Satellites -- 8.1. Fundamentals of Satellite Navigation -- 8.1.1. GNSS Architecture -- 8.1.2. Signals and Range Measurement -- 8.1.3. Positioning -- 8.1.4. Error Sources and Performance Limitations -- 8.2. The Systems -- 8.2.1. Global Positioning System -- 8.2.2. GLONASS -- 8.2.3. Galileo -- 8.2.4. Beidou -- 8.2.5. Regional Systems -- 8.2.6. Augmentation Systems -- 8.2.7. System Compatibility -- 8.3. GNSS Signals -- 8.3.1. Signal Types -- 8.3.2. Global Positioning System -- 8.3.3. GLONASS -- 8.3.4. Galileo -- 8.3.5. Beidou -- 8.3.6. Regional Systems -- 8.3.7. Augmentation Systems -- 8.4. Navigation Data Messages -- 8.4.1. GPS -- 8.4.2. GLONASS -- 8.4.3. Galileo -- 8.4.4. SBAS --
Text of Note
8.4.5. Time Base Synchronization -- 8.5. Satellite Orbits and Geometry -- 8.5.1. Satellite Orbits -- 8.5.2. Satellite Position and Velocity -- 8.5.3. Range, Range Rate, and Line of Sight -- 8.5.4. Elevation and Azimuth -- References -- ch. 9 GNSS: User Equipment Processing and Errors -- 9.1. Receiver Hardware and Antenna -- 9.1.1. Antennas -- 9.1.2. Reference Oscillator -- 9.1.3. Receiver Front End -- 9.1.4. Baseband Signal Processor -- 9.2. Ranging Processor -- 9.2.1. Acquisition -- 9.2.2. Code Tracking -- 9.2.3. Carrier Tracking -- 9.2.4. Tracking Lock Detection -- 9.2.5. Navigation-Message Demodulation -- 9.2.6. Carrier-Power-to-Noise-Density Measurement -- 9.2.7. Pseudo-Range, Pseudo-Range-Rate, and Carrier-Phase Measurements -- 9.3. Range Error Sources -- 9.3.1. Ephemeris Prediction and Satellite Clock Errors -- 9.3.2. Ionosphere and Troposphere Propagation Errors -- 9.3.3. Tracking Errors -- 9.3.4. Multipath, Nonline-of-Sight, and Diffraction -- 9.4. Navigation Processor -- 9.4.1. Single-Epoch Navigation Solution -- 9.4.2. Filtered Navigation Solution -- 9.4.3. Signal Geometry and Navigation Solution Accuracy -- 9.4.4. Position Error Budget -- References.
Text of Note
ch. 10 GNSS: Advanced Techniques -- 10.1. Differential GNSS -- 10.1.1. Spatial and Temporal Correlation of GNSS Errors -- 10.1.2. Local and Regional Area DGNSS -- 10.1.3. Wide Area DGNSS and Precise Point Positioning -- 10.1.4. Relative GNSS -- 10.2. Real-Time Kinematic Carrier-Phase Positioning and Attitude Determination -- 10.2.1. Principles of Accumulated Delta Range Positioning -- 10.2.2. Single-Epoch Navigation Solution Using Double-Differenced ADR -- 10.2.3. Geometry-Based Integer Ambiguity Resolution -- 10.2.4. Multifrequency Integer Ambiguity Resolution -- 10.2.5. GNSS Attitude Determination -- 10.3. Interference Rejection and Weak Signal Processing -- 10.3.1. Sources of Interference, Jamming, and Attenuation -- 10.3.2. Antenna Systems -- 10.3.3. Receiver Front-End Filtering -- 10.3.4. Extended Range Tracking -- 10.3.5. Receiver Sensitivity -- 10.3.6.Combined Acquisition and Tracking -- 10.3.7. Vector Tracking -- 10.4. Mitigation of Multipath Interference and Nonline-of-Sight Reception -- 10.4.1. Antenna-Based Techniques -- 10.4.2. Receiver-Based Techniques -- 10.4.3. Navigation-Processor-Based Techniques -- 10.5. Aiding, Assistance, and Orbit Prediction -- 10.5.1. Acquisition and Velocity Aiding -- 10.5.2. Assisted GNSS -- 10.5.3. Orbit Prediction -- 10.6. Shadow Matching -- References -- ch. 11 Long- and Medium-Range Radio Navigation -- 11.1. Aircraft Navigation Systems --
0
8
8
8
8
8
8
8
8
8
8
8
SUMMARY OR ABSTRACT
Text of Note
This newly revised and greatly expanded edition of the popular Artech House book Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems offers you a current and comprehensive understanding of satellite navigation, inertial navigation, terrestrial radio navigation, dead reckoning, and environmental feature matching . It provides both an introduction to navigation systems and an in-depth treatment of INS/GNSS and multisensor integration. The second edition offers a wealth of added and updated material, including a brand new chapter on the principles of radio positioning and a chapter devoted to important applications in the field. Other updates include expanded treatments of map matching, image-based navigation, attitude determination, acoustic positioning, pedestrian navigation, advanced GNSS techniques, and several terrestrial and short-range radio positioning technologies. The book shows you how satellite, inertial, and other navigation technologies work, and focuses on processing chains and error sources. In addition, you get a clear introduction to coordinate frames, multi-frame kinematics, Earth models, gravity, Kalman filtering, and nonlinear filtering. Providing solutions to common integration problems, the book describes and compares different integration architectures, and explains how to model different error sources. You get a broad and penetrating overview of current technology and are brought up to speed with the latest developments in the field, including context-dependent and cooperative positioning.
OTHER EDITION IN ANOTHER MEDIUM
Title
Principles of GNSS, inertial, and multisensor integrated navigation systems.