• Home
  • Advanced Search
  • Directory of Libraries
  • About lib.ir
  • Contact Us
  • History

عنوان
An R companion to applied regression /

پدید آورنده
John Fox, McMaster University, Sanford Weisberg, University of Minnesota.

موضوع
R (Computer program language),Regression analysis-- Data processing.,Mathematical Computing.,Regression Analysis.,R (Computer program language),Regression analysis-- Data processing.

رده
QA278
.
2
.
F628
2019

کتابخانه
Center and Library of Islamic Studies in European Languages

محل استقرار
استان: Qom ـ شهر: Qom

Center and Library of Islamic Studies in European Languages

تماس با کتابخانه : 32910706-025

INTERNATIONAL STANDARD BOOK NUMBER

(Number (ISBN
1544336470
(Number (ISBN
9781544336473

TITLE AND STATEMENT OF RESPONSIBILITY

Title Proper
An R companion to applied regression /
General Material Designation
[Book]
First Statement of Responsibility
John Fox, McMaster University, Sanford Weisberg, University of Minnesota.

EDITION STATEMENT

Edition Statement
Third edition.

.PUBLICATION, DISTRIBUTION, ETC

Place of Publication, Distribution, etc.
Thousand Oaks, California :
Name of Publisher, Distributor, etc.
SAGE Publications, Inc.,
Date of Publication, Distribution, etc.
[2019]

PHYSICAL DESCRIPTION

Specific Material Designation and Extent of Item
xxx, 577 pages ;
Dimensions
26 cm

INTERNAL BIBLIOGRAPHIES/INDEXES NOTE

Text of Note
Includes bibliographical references and indexes.

CONTENTS NOTE

Text of Note
Machine generated contents note: What Is R? -- Obtaining and Installing R and RStudio -- Installing R on a Windows System -- Installing R on a macOS System -- Installing RStudio -- Installing and Using R Packages -- Optional: Customizing R -- Optional: Installing LATEX -- Using This Book -- Chapter Synopses -- Typographical Conventions -- New in the Third Edition -- The Website for the R Companion -- Beyond the R Companion -- Acknowledgments -- 1.1.Projects in RStudio -- 1.2.R Basics -- 1.2.1.Interacting With R Through the Console -- 1.2.2.Editing R Commands in the Console -- 1.2.3.R Functions -- 1.2.4.Vectors and Variables -- 1.2.5.Nonnumeric Vectors -- 1.2.6.Indexing Vectors -- 1.2.7.User-Defined Functions -- 1.3.Fixing Errors and Getting Help -- 1.3.1.When Things Go Wrong -- 1.3.2.Getting Help and Information -- 1.4.Organizing Your Work in R and RStudio and Making It Reproducible -- 1.4.1.Using the RStudio Editor With R Script Files -- 1.4.2.Writing R Markdown Documents
Text of Note
Note continued: 1.5.An Extended Illustration: Duncan's Occupational-Prestige Regression -- 1.5.1.Examining the Data -- 1.5.2.Regression Analysis -- 1.5.3.Regression Diagnostics -- 1.6.R Functions for Basic Statistics -- 1.7.Generic Functions and Their Methods* -- 2.1.Data Input -- 2.1.1.Accessing Data From a Package -- 2.1.2.Entering a Data Frame Directly -- 2.1.3.Reading Data From Plain-Text Files -- 2.1.4.Files and Paths -- 2.1.5.Exporting or Saving a Data Frame to a File -- 2.1.6.Reading and Writing Other File Formats -- 2.2.Other Approaches to Reading and Managing Data Sets in R -- 2.3.Working With Data Frames -- 2.3.1.How the R Interpreter Finds Objects -- 2.3.2.Missing Data -- 2.3.3.Modifying and Transforming Data -- 2.3.4.Binding Rows and Columns -- 2.3.5.Aggregating Data Frames -- 2.3.6.Merging Data Frames -- 2.3.7.Reshaping Data -- 2.4.Working With Matrices, Arrays, and Lists -- 2.4.1.Matrices -- 2.4.2.Arrays -- 2.4.3.Lists -- 2.4.4.Indexing
Text of Note
Note continued: 10.3.5.Miscellaneous Matrix Computations -- 10.4.Program Control With Conditionals, Loops, and Recursion -- 10.4.1.Conditionals -- 10.4.2.Iteration (Looping) -- 10.4.3.Recursion -- 10.5.Avoiding Loops: apply () and Its Relatives -- 10.5.1.To Loop or Not to Loop? -- 10.6.Optimization Problems* -- 10.6.1.Zero-Inflated Poisson Regression -- 10.7.Monte-Carlo Simulation* -- 10.7.1.Testing Regression Models Using Simulation -- 10.8.Debugging R Code* -- 10.9.Object-Oriented Programming in R* -- 10.10.Writing Statistical-Modeling Functions in R* -- 10.11.Organizing Code for R Functions -- 10.12.Complementary Reading and References.
Text of Note
Note continued: 2.5.Dates and Times -- 2.6.Character Data -- 2.7.Large Data Sets in R* -- 2.7.1.How Large Is "Large"? -- 2.7.2.Reading and Saving Large Data Sets -- 2.8.Complementary Reading and References -- 3.1.Examining Distributions -- 3.1.1.Histograms -- 3.1.2.Density Estimation -- 3.1.3.Quantile-Comparison Plots -- 3.1.4.Boxplots -- 3.2.Examining Relationships -- 3.2.1.Scatterplots -- 3.2.2.Parallel Boxplots -- 3.2.3.More on the plot () Function -- 3.3.Examining Multivariate Data -- 3.3.1.Three-Dimensional Plots -- 3.3.2.Scatterplot Matrices -- 3.4.Transforming Data -- 3.4.1.Logarithms: The Champion of Transformations -- 3.4.2.Power Transformations -- 3.4.3.Transformations and Exploratory Data Analysis -- 3.4.4.Transforming Restricted-Range Variables -- 3.4.5.Other Transformations -- 3.5.Point Labeling and Identification -- 3.5.1.The identify () Function -- 3.5.2.Automatic Point Labeling -- 3.6.Scatterplot Smoothing -- 3.7.Complementary Reading and References
Text of Note
Note continued: 4.1.The Linear Model -- 4.2.Linear Least-Squares Regression -- 4.2.1.Simple Linear Regression -- 4.2.2.Multiple Linear Regression -- 4.2.3.Standardized Regression Coefficients -- 4.3.Predictor Effect Plots -- 4.4.Polynomial Regression and Regression Splines -- 4.4.1.Polynomial Regression -- 4.4.2.Regression Splines* -- 4.5.Factors in Linear Models -- 4.5.1.A Linear Model With One Factor: One-Way Analysis of Variance -- 4.5.2.Additive Models With Numeric Predictors and Factors -- 4.6.Linear Models With Interactions -- 4.6.1.Interactions Between Numeric Predictors and Factors -- 4.6.2.Shortcuts for Writing Linear-Model Formulas -- 4.6.3.Multiple Factors -- 4.6.4.Interactions Between Numeric Predictors* -- 4.7.More on Factors -- 4.7.1.Dummy Coding -- 4.7.2.Other Factor Codings -- 4.7.3.Ordered Factors and Orthogonal-Polynomial Contrasts -- 4.7.4.User-Specified Contrasts* -- 4.7.5.Suppressing the Intercept in a Model With Factors*
Text of Note
Note continued: 4.8.Too Many Regressors* -- 4.9.The Arguments of the lm () Function -- 4.9.1.formula -- 4.9.2.data -- 4.9.3.subset -- 4.9.4.weights -- 4.9.5.na.action -- 4.9.6.method, model, x, y, qr* -- 4.9.7.singular.ok* -- 4.9.8.contrasts -- 4.9.9.offset -- 4.10.Complementary Reading and References -- 5.1.Coefficient Standard Errors -- 5.1.1.Conventional Standard Errors of Least-Squares Regression Coefficients -- 5.1.2.Robust Regression Coefficient Standard Errors -- 5.1.3.Using the Bootstrap to Compute Standard Errors -- 5.1.4.The Delta Method for Standard Errors of Nonlinear Functions* -- 5.2.Confidence Intervals -- 5.2.1.Wald Confidence Intervals -- 5.2.2.Bootstrap Confidence Intervals -- 5.2.3.Confidence Regions and Data Ellipses* -- 5.3.Testing Hypotheses About Regression Coefficients -- 5.3.1.Wald Tests -- 5.3.2.Likelihood-Ratio Tests and the Analysis of Variance -- 5.3.3.Sequential Analysis of Variance -- 5.3.4.The Anova () Function
Text of Note
Note continued: 5.3.5.Testing General Linear Hypotheses* -- 5.4.Complementary Reading and References -- 6.1.Review of the Structure of GLMs -- 6.2.The glm () Function in R -- 6.3.GLMs for Binary Response Data -- 6.3.1.Example: Women's Labor Force Participation -- 6.3.2.Example: Volunteering for a Psychological Experiment -- 6.3.3.Predictor Effect Plots for Logistic Regression -- 6.3.4.Analysis of Deviance and Hypothesis Tests for Logistic Regression -- 6.3.5.Fitted and Predicted Values -- 6.4.Binomial Data -- 6.5.Poisson GLMs for Count Data -- 6.6.Loglinear Models for Contingency Tables -- 6.6.1.Two-Dimensional Tables -- 6.6.2.Three-Dimensional Tables -- 6.6.3.Sampling Plans for Loglinear Models -- 6.6.4.Response Variables -- 6.7.Multinomial Response Data -- 6.8.Nested Dichotomies -- 6.9.The Proportional-Odds Model -- 6.9.1.Testing for Proportional Odds -- 6.10.Extensions -- 6.10.1.More on the Anova () Function -- 6.10.2.Gamma Models
Text of Note
Note continued: 6.10.3.Quasi-Likelihood Estimation -- 6,10.4.Overdispersed Binomial and Poisson Models -- 6.11.Arguments to glm() -- 6.11.1.weights -- 6.11.2.start, etastart, mustart -- 6.11.3.offset -- 6.11.4.control -- 6.11.5.model, method, x, y -- 6.12.Fitting GLMs by Iterated Weighted Least Squares* -- 6.13.Complementary Reading and References -- 7.1.Background: The Linear Model Revisited -- 7.1.1.The Linear Model in Matrix Form* -- 7.2.Linear Mixed-Effects Models -- 7.2.1.Matrix Form of the Linear Mixed-Effects Model* -- 7.2.2.An Application to Hierarchical Data -- 7.2.3.Wald Tests for Linear Mixed-Effects Models -- 7.2.4.Examining the Random Effects: Computing BLUPs -- 7.2.5.An Application to Longitudinal Data -- 7.2.6.Modeling the Errors -- 7.2.7.Sandwich Standard Errors for Least-Squares Estimates -- 7.3.Generalized Linear Mixed Models -- 7.3.1.Matrix Form of the GLMM* -- 7.3.2.Example: Minneapolis Police Stops -- 7.4.Complementary Reading -- 8.1.Residuals
Text of Note
Note continued: 8.10.Complementary Reading and References -- 9.1.A General Approach to R Graphics -- 9.1.1.Defining a Coordinate System: plot () -- 9.1.2.Graphics Parameters: par () -- 9.1.3.Adding Graphical Elements: axis (), points (), lines (), text (), et al. -- 9.1.4.Specifying Colors -- 9.2.Putting It Together: Explaining Local Linear Regression -- 9.2.1.Finer Control Over Plot Layout -- 9.3.Other R Graphics Packages -- 9.3.1.The lattice Package -- 9.3.2.The ggplot2 Package -- 9.3.3.Maps -- 9.3.4.Other Notable Graphics Packages -- 9.4.Complementary Reading and References -- 10.1.Why Learn to Program in R? -- 10.2.Defining Functions: Preliminary Examples -- 10.2.1.Lagging a Variable -- 10.2.2.Creating an Influence Plot -- 10.3.Working With Matrices* -- 10.3.1.Basic Matrix Arithmetic -- 10.3.2.Matrix Inversion and the Solution of Linear Simultaneous Equations -- 10.3.3.Example: Linear Least-Squares Regression -- 10.3.4.Eigenvalues and Eigenvectors
Text of Note
Note continued: 8.2.Basic Diagnostic Plots -- 8.2.1.Plotting Residuals -- 8.2.2.Marginal-Model Plots -- 8.2.3.Added-Variable Plots -- 8.2.4.Marginal-Conditional Plots -- 8.3.Unusual Data -- 8.3.1.Outliers and Studentized Residuals -- 8.3.2.Leverage: Hat-Values -- 8.3.3.Influence Measures -- 8.4.Transformations After Fitting a Regression Model -- 8.4.1.Transforming the Response -- 8.4.2.Predictor Transformations -- 8.5.Nonconstant Error Variance -- 8.5.1.Testing for Nonconstant Error Variance -- 8.6.Diagnostics for Generalized Linear Models -- 8.6.1.Residuals and Residual Plots -- 8.6.2.Influence Measures -- 8.6.3.Graphical Methods: Added-Variable Plots, Component-Plus-Residual Plots, and Effect Plots With Partial Residuals -- 8.7.Diagnostics for Mixed-Effects Models -- 8.7.1.Mixed-Model Component-Plus-Residual Plots -- 8.7.2.Influence Diagnostics for Mixed Models -- 8.8.Collinearity and Variance Inflation Factors -- 8.9.Additional Regression Diagnostics
0
0
0
0
0
0
0
0
0
0

TOPICAL NAME USED AS SUBJECT

R (Computer program language)
Regression analysis-- Data processing.
Mathematical Computing.
Regression Analysis.
R (Computer program language)
Regression analysis-- Data processing.

DEWEY DECIMAL CLASSIFICATION

Number
519
.
5/3602855133
Edition
23

LIBRARY OF CONGRESS CLASSIFICATION

Class number
QA278
.
2
Book number
.
F628
2019

OTHER CLASS NUMBERS

Class number
QA
278
.
2
F792
2019

PERSONAL NAME - PRIMARY RESPONSIBILITY

Fox, John,1947-

PERSONAL NAME - ALTERNATIVE RESPONSIBILITY

Weisberg, Sanford,1947-

ORIGINATING SOURCE

Date of Transaction
20200823042640.0
Cataloguing Rules (Descriptive Conventions))
rda

ELECTRONIC LOCATION AND ACCESS

Electronic name
 مطالعه متن کتاب 

[Book]

Y

Proposal/Bug Report

Warning! Enter The Information Carefully
Send Cancel
This website is managed by Dar Al-Hadith Scientific-Cultural Institute and Computer Research Center of Islamic Sciences (also known as Noor)
Libraries are responsible for the validity of information, and the spiritual rights of information are reserved for them
Best Searcher - The 5th Digital Media Festival