Understand, manage, and prevent algorithmic bias :
General Material Designation
[Book]
Other Title Information
a guide for business users and data scientists /
First Statement of Responsibility
Tobias Baer.
.PUBLICATION, DISTRIBUTION, ETC
Place of Publication, Distribution, etc.
[New York, NY] :
Name of Publisher, Distributor, etc.
Apress,
Date of Publication, Distribution, etc.
[2019]
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
1 online resource
INTERNAL BIBLIOGRAPHIES/INDEXES NOTE
Text of Note
Includes bibliographical references and index.
CONTENTS NOTE
Text of Note
Part I: An Introduction to Biases and Algorithms -- Chapter 1: Introduction -- Chapter 2: Bias in Human Decision-Making -- Chapter 3: How Algorithms Debias Decisions -- Chapter 4: The Model Development Process -- Chapter 5: Machine Learning in a Nutshell -- Part II: Where Does Algorithmic Bias Come From? -- Chapter 6: How Real World Biases Will Be Mirrored by Algorithms -- Chapter 7: Data Scientists' Biases -- Chapter 8: How Data Can Introduce Biases -- Chapter 9: The Stability Bias of Algorithms -- Chapter 10: Biases Introduced by the Algorithm Itself -- Chapter 11: Algorithmic Biases and Social Media -- Part III: What to Do About Algorithmic Bias from a User Perspective -- Chapter 12: Options for Decision-Making -- Chapter 13: Assessing the Risk of Algorithmic Bias -- Chapter 14: How to Use Algorithms Safely -- Chapter 15: How to Detect Algorithmic Biases -- Chapter 16: Managerial Strategies for Correcting Algorithmic Bias -- Chapter 17: How to Generate Unbiased Data -- Part IV: What to Do About Algorithmic Bias from a Data Scientist's Perspective -- Chapter 18: The Data Scientist's Role in Overcoming Algorithmic Bias -- Chapter 19: An X-Ray Exam of Your Data -- Chapter 20: When to Use Machine Learning -- Chapter 21: How to Marry Machine Learning with Traditional Methods -- Chapter 22: How to Prevent Bias in Self-Improving Models -- Chapter 23: How to Institutionalize Debiasing.
0
SUMMARY OR ABSTRACT
Text of Note
The human mind is evolutionarily designed to take shortcuts in order to survive. We jump to conclusions because our brains want to keep us safe. A majority of our biases work in our favor, such as when we feel a car speeding in our direction is dangerous and we instantly move, or when we decide not take a bite of food that appears to have gone bad. However, inherent bias negatively affects work environments and the decision-making surrounding our communities. While the creation of algorithms and machine learning attempts to eliminate bias, they are, after all, created by human beings, and thus are susceptible to what we call algorithmic bias. In Understand, Manage, and Prevent Algorithmic Bias, author Tobias Baer helps you understand where algorithmic bias comes from, how to manage it as a business user or regulator, and how data science can prevent bias from entering statistical algorithms. Baer expertly addresses some of the 100+ varieties of natural bias such as confirmation bias, stability bias, pattern-recognition bias, and many others. Algorithmic bias mirrors--and originates in--these human tendencies. While most writings on algorithmic bias focus on the dangers, the core of this positive, fun book points toward a path where bias is kept at bay and even eliminated. Youll come away with managerial techniques to develop unbiased algorithms, the ability to detect bias more quickly, and knowledge to create unbiased data. Understand, Manage, and Prevent Algorithmic Bias is an innovative, timely, and important book that belongs on your shelf. Whether you are a seasoned business executive, a data scientist, or simply an enthusiast, now is a crucial time to be educated about the larger sociological impact of bias in the digital era.
ACQUISITION INFORMATION NOTE
Source for Acquisition/Subscription Address
OverDrive, Inc.
Source for Acquisition/Subscription Address
Safari Books Online
Stock Number
7693719E-6319-4ACD-83AB-107A44925CA1
Stock Number
CL0501000059
OTHER EDITION IN ANOTHER MEDIUM
Title
Understand, Manage, and Prevent Algorithmic Bias : A Guide for Business Users and Data Scientists.