Cover; Title Page; Copyright Page; Contents; Preface; 1 General Aspects; 1.1 History of the Literature; 1.2 Amount of Wastes; 1.3 Metal Content in Wastes; 1.3.1 Waste Poly(ethylene) and Pure High Density Poly(ethylene); 1.4 Analysis Procedures; 1.4.1 Fluorescence Labeling; 1.4.2 Time-Gated Fluorescence Spectroscopy; 1.4.3 Content of Flame Retardants; 1.4.4 Identifi cation of Black Plastics; 1.4.5 Raman Spectroscopy; 1.4.6 Life Cycle Assessment; 1.4.7 Analysis of Contaminated Mixed Waste Plastics; 1.4.8 Construction and Household Plastic Waste.
Text of Note
1.4.9 Models for Forecasting the Composition of Waste Materials1.5 Standards; 1.5.1 Circular Economy Package; 1.5.2 SPI Codes; 1.5.3 Test Samples for Biodegradation; 1.5.4 Mixed Municipal Waste; 1.5.5 Aerobic Composting; 1.5.6 Contaminants in Recycled Plastics; 1.6 Special Problems with Plastics; 1.6.1 Stability of Plastics; 1.6.2 Additives; 1.6.3 Plastics in Food; 1.6.4 Seawater; 1.6.5 Landfill; 1.6.6 Electronic Waste; References; 2 Environmental Aspects; 2.1 Pollution of the Marine Environment; 2.1.1 Pathways of Plastics into the Marine Environment.
Text of Note
2.1.2 Deleterious Effects on the Marine Environment2.1.3 Reports Concerning Special Locations; 2.1.4 Analysis Methods; 2.1.5 Plastic Preproduction Pellets; 2.1.6 Leaching of Plastics; 2.1.7 Micro-plastics; 2.1.8 Marine Animals; 2.2 Pollution of the Terrestrial Environment; 2.2.1 Waste Generation; 2.2.2 Disposal in Landfills; 2.2.3 Plastic Materials for Packaging; References; 3 Recycling Methods; 3.1 Alternative Plastic Materials; 3.2 Mechanical Recycling; 3.2.1 Poly(lactic acid); 3.2.2 Nanocellulose Coated Poly(ethylene) Films; 3.2.3 Electric Uses; 3.3 Primary Recycling.
Text of Note
3.4 Renewable Polymer Synthesis3.4.1 Natural Solvents for Expanded Poly(styrene); 3.4.2 Landfill Methane Recycling; 3.4.3 Anaerobic Landfill; 3.4.4 Simulated Semi-aerobic Landfill; 3.5 Preparation and Regeneration of Catalysts; 3.5.1 Reuse of ZSM-5 Zeolite; 3.5.2 Modifi cation of Zeolites; 3.6 Pyrolysis Methods; 3.6.1 Fluidized-Bed Reactor; 3.7 Metallized Plastics Waste; 3.7.1 Rotary Kiln Pyrolysis; 3.8 Mixed Plastics; 3.8.1 Grinding and Cleaning; 3.8.2 Reductant in Ironmaking; 3.9 Separation Processes; 3.9.1 Automated Sorting of Waste; 3.9.2 Sorting According to Density.
Text of Note
3.9.3 Hydrocyclonic Separation of Waste Plastics3.9.4 Froth Flotation; 3.10 Triboelectrostatic Separation; 3.11 Wet Gravity Separation; 3.11.1 Selective Dissolution/Precipitation Technique for Polymer Recycling; 3.12 Supercritical Water; 3.13 Solvent Treatment; References; 4 Recovery of Monomers; 4.1 Process for Obtaining a Polymerizable Monomer; 4.2 Pyrolysis in Carrier Gas; 4.3 Fluidized Bed Method; 4.4 Recovery of Monomers from Waste Gas Streams; 4.5 Polyolefins; 4.6 Poly(styrene); 4.6.1 Methods with Supercritical Materials; 4.6.2 Volcanic Tuff and Florisil Catalysts.
0
8
8
8
8
SUMMARY OR ABSTRACT
Text of Note
With the huge amount of plastics floating in the oceans, fish and other sea creatures are directly suffering the consequences. On land, city leaders and planners are banning one-use plastics as well as plastic bags from grocery stores in an effort to stem the use. Many countries have made official announcements and warnings concerning the pollution caused from plastic wastes. These urgent developments have stimulated the author to study the problem and write Polymer Waste Management. Plastic recycling refers to a method that retrieves the original plastic material. However, there are many sophisticated methods available for the treatment and management of waste plastics such as basic primary recycling, where the materials are sorted and collected individually. In chemical recycling, the monomers and related compounds are processed by special chemical treatments. Other methods, such as pyrolysis, can produce fuels from waste plastics. These methods and others are treated comprehensively in the book This ground-breaking book also discusses: -General aspects, such as amount of plastics production, types of waste plastics, analysis procedures for identification of waste plastic types, standards for waste treatment, contaminants in recycled plastics.-Environmental aspects, such as pollution in the marine environment and landfills.-The advantages of the use of bio-based plastics.-Recycling methods for individual plastic types and special catalysts.