Alexander Konyukhov, Karlsruhe Institute of Technology (KIT), Germany, Ridvan Izi, Karlsruhe Institute of Technology (KIT), Germany.
.PUBLICATION, DISTRIBUTION, ETC
Place of Publication, Distribution, etc.
Chichester, West Sussex :
Name of Publisher, Distributor, etc.
Wiley,
Date of Publication, Distribution, etc.
2015.
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
1 online resource.
SERIES
Series Title
Wiley series in computational mechanics
INTERNAL BIBLIOGRAPHIES/INDEXES NOTE
Text of Note
Includes bibliographical references and index.
CONTENTS NOTE
Text of Note
Cover; Title Page; Copyright; Contents; Series Preface; Preface; Acknowledgments; Part I Theory; Chapter 1 Introduction with a Spring-Mass Frictionless Contact System; 1.1 Structural Part-Deflection of Spring-Mass System; 1.2 Contact Part-Non-Penetration into Rigid Plane; 1.3 Contact Formulations; 1.3.1 Lagrange Multiplier Method; 1.3.2 Penalty Method; 1.3.3 Augmented Lagrangian Method; Chapter 2 General Formulation of a Contact Problem; 2.1 Structural Part-Formulation of a Problem in Linear Elasticity; 2.1.1 Strong Formulation of Equilibrium; 2.1.2 Weak Formulation of Equilibrium
Text of Note
2.2 Formulation of the Contact Part (Signorini's problem)Chapter 3 Differential Geometry; 3.1 Curve and its Properties; 3.1.1 Example: Circle and its Properties; 3.2 Frenet Formulas in 2D; 3.3 Description of Surfaces by Gauss Coordinates; 3.3.1 Tangent and Normal Vectors: Surface Coordinate System; 3.3.2 Basis Vectors: Metric Tensor and its Applications; 3.3.3 Relationships between Co- and Contravariant Basis Vectors; 3.3.4 Co- and Contravariant Representation of a Vector on a Surface; 3.3.5 Curvature Tensor and Structure of the Surface; 3.4 Differential Properties of Surfaces
Text of Note
4.3.2 Contact Kinematics in 3D Coordinate SystemChapter 5 Abstract Form of Formulations in Computational Mechanics; 5.1 Operator Necessary for the Abstract Formulation; 5.1.1 Examples of Operators in Mechanics; 5.1.2 Examples of Various Problems; 5.2 Abstract Form of the Iterative Method; 5.3 Fixed Point Theorem (Banach); 5.4 Newton Iterative Solution Method; 5.4.1 Geometrical Interpretation of the Newton Iterative Method; 5.5 Abstract Form for Contact Formulations; 5.5.1 Lagrange Multiplier Method in Operator Form; 5.5.2 Penalty Method in Operator Form
0
8
8
SUMMARY OR ABSTRACT
Text of Note
Introduction to Computational Contact Mechanics: A Geometrical Approach covers the fundamentals of computational contact mechanics and focuses on its practical implementation. Part one of this textbook focuses on the underlying theory and covers essential information about differential geometry and mathematical methods which are necessary to build the computational algorithm independently from other courses in mechanics. The geometrically exact theory for the computational contact mechanics is described in step-by-step manner, using examples of strict derivation from a mathematical point of vi.