• Home
  • Advanced Search
  • Directory of Libraries
  • About lib.ir
  • Contact Us
  • History

عنوان
The use of interferometric spaceborne radar and GIS to measure ground subsidence in peat soils in Indonesia

پدید آورنده
Dahdal, Bashar

موضوع

رده

کتابخانه
Center and Library of Islamic Studies in European Languages

محل استقرار
استان: Qom ـ شهر: Qom

Center and Library of Islamic Studies in European Languages

تماس با کتابخانه : 32910706-025

NATIONAL BIBLIOGRAPHY NUMBER

Number
TLets551775

TITLE AND STATEMENT OF RESPONSIBILITY

Title Proper
The use of interferometric spaceborne radar and GIS to measure ground subsidence in peat soils in Indonesia
General Material Designation
[Thesis]
First Statement of Responsibility
Dahdal, Bashar
Subsequent Statement of Responsibility
Tansey, Kevin

.PUBLICATION, DISTRIBUTION, ETC

Name of Publisher, Distributor, etc.
University of Leicester
Date of Publication, Distribution, etc.
2011

DISSERTATION (THESIS) NOTE

Dissertation or thesis details and type of degree
Thesis (Ph.D.)
Text preceding or following the note
2011

SUMMARY OR ABSTRACT

Text of Note
Interferometric synthetic aperture radar (InSAR) has been increasingly used to extract information about the earth‟s surface by exploiting the phase difference between two complex radar signals. Some significant application fields that utilize InSAR techniques are digital elevation model (DEM) generation, land use classification and land subsidence. In this thesis, by using ERS-1/2 tandem SAR images pairs, the potential implementations of SAR interferometry in tropical peatland forests in Central Kalimantan, Indonesia are described. Coherence was found to be a good tool for rapid assessment for burned and deforested areas. The coherence of burned forest area was increased by 0.2; whilst the minimum coherence was found to be than 0.35. However, many critical factors affect the quality of InSAR data and limit its applications, such as methods of InSAR data processing. This study emphasizes the impact of different processing and phase unwrapping techniques on DEM accuracy. Analyses of InSAR DEM accuracy indicate that DEMs with relative errors of less than 3 m root mean square error (RMSE) are possible in some regions in the former Mega Rice Project (Ex-MRP) area and could meet many objectives of a global mapping mission. Applying adaptive filtering many times with a decreasing window size has a strong impact to reduce the number of residues, which can increase the phase unwrapping efficiency and the final DEM accuracy. Furthermore, the differential SAR Interferometry (DInSAR) was examined to see if it can detect peatland subsidence accurately from October 1997 to January 2000 using 4-pass and complex interferogram combination methods. The subsidence rate of 2 cm per year is considered to be the best possible prediction for subsidence in the project area and between 53 and 83 Mt of peat carbon was lost for the same period of the study. The contribution of the maximum subsidence to the emission of CO2 was estimated to be 52 tonnes per hectare per year. These results are not reliable enough for detailed planning purposes, but they provide a basis for further work by highlighting where methodological development is needed.

PERSONAL NAME - PRIMARY RESPONSIBILITY

Dahdal, Bashar

PERSONAL NAME - SECONDARY RESPONSIBILITY

Tansey, Kevin

CORPORATE BODY NAME - SECONDARY RESPONSIBILITY

University of Leicester

ELECTRONIC LOCATION AND ACCESS

Electronic name
 مطالعه متن کتاب 

p

[Thesis]
276903

a
Y

Proposal/Bug Report

Warning! Enter The Information Carefully
Send Cancel
This website is managed by Dar Al-Hadith Scientific-Cultural Institute and Computer Research Center of Islamic Sciences (also known as Noor)
Libraries are responsible for the validity of information, and the spiritual rights of information are reserved for them
Best Searcher - The 5th Digital Media Festival