• Home
  • Advanced Search
  • Directory of Libraries
  • About lib.ir
  • Contact Us
  • History

عنوان
Linear and nonlinear programming /

پدید آورنده
David G. Luenberger, Yinyu Ye.

موضوع
Linear programming.,Nonlinear programming.,Linear programming.,Lineare Optimierung,Nichtlineare Optimierung,Nonlinear programming.,Optimierung

رده
T57
.
7
.
L84
2016

کتابخانه
Center and Library of Islamic Studies in European Languages

محل استقرار
استان: Qom ـ شهر: Qom

Center and Library of Islamic Studies in European Languages

تماس با کتابخانه : 32910706-025

INTERNATIONAL STANDARD BOOK NUMBER

(Number (ISBN
3319188410
(Number (ISBN
3319188429
(Number (ISBN
9783319188416
(Number (ISBN
9783319188423
Erroneous ISBN
9783319188423

NATIONAL BIBLIOGRAPHY NUMBER

Country Code
bnb
Number
b623895

TITLE AND STATEMENT OF RESPONSIBILITY

Title Proper
Linear and nonlinear programming /
General Material Designation
[Book]
First Statement of Responsibility
David G. Luenberger, Yinyu Ye.

EDITION STATEMENT

Edition Statement
Fourth edition.

PHYSICAL DESCRIPTION

Specific Material Designation and Extent of Item
xiii, 546 pages :
Other Physical Details
illustrations (black and white) ;
Dimensions
25 cm

SERIES

Series Title
International series in operations research & management science,
Volume Designation
volume 228
ISSN of Series
0884-8289 ;

GENERAL NOTES

Text of Note
"ISSN 2214-7934 (electronic)"--Title page verso.

INTERNAL BIBLIOGRAPHIES/INDEXES NOTE

Text of Note
Includes bibliographical references and index.

CONTENTS NOTE

Text of Note
Machine generated contents note: 1. Introduction -- 1.1. Optimization -- 1.2. Types of Problems -- 1.3. Size of Problems -- 1.4. Iterative Algorithms and Convergence -- pt. I Linear Programming -- 2. Basic Properties of Linear Programs -- 2.1. Introduction -- 2.2. Examples of Linear Programming Problems -- 2.3. Basic Solutions -- 2.4. The Fundamental Theorem of Linear Programming -- 2.5. Relations to Convexity -- 2.6. Exercises -- 3. The Simplex Method -- 3.1. Pivots -- 3.2. Adjacent Extreme Points -- 3.3. Determining a Minimum Feasible Solution -- 3.4.Computational Procedure: Simplex Method -- 3.5. Finding a Basic Feasible Solution -- 3.6. Matrix Form of the Simplex Method -- 3.7. Simplex Method for Transportation Problems -- 3.8. Decomposition -- 3.9. Summary -- 3.10. Exercises -- 4. Duality and Complementarity -- 4.1. Dual Linear Programs -- 4.2. The Duality Theorem -- 4.3. Relations to the Simplex Procedure -- 4.4. Sensitivity and Complementary Slackness -- 4.5. Max Flow -- Min Cut Theorem.
Text of Note
Note continued: 10.5. Convergence Properties -- 10.6. Scaling -- 10.7. Memoryless Quasi-Newton Methods -- 10.8.*Combination of Steepest Descent and Newton's Method -- 10.9. Summary -- 10.10. Exercises -- pt. III Constrained Minimization -- 11. Constrained Minimization Conditions -- 11.1. Constraints -- 11.2. Tangent Plane -- 11.3. First-Order Necessary Conditions (Equality Constraints) -- 11.4. Examples -- 11.5. Second-Order Conditions -- 11.6. Eigenvalues in Tangent Subspace -- 11.7. Sensitivity -- 11.8. Inequality Constraints -- 11.9. Zero-Order Conditions and Lagrangian Relaxation -- 11.10. Summary -- 11.11. Exercises -- 12. Primal Methods -- 12.1. Advantage of Primal Methods -- 12.2. Feasible Direction Methods -- 12.3. Active Set Methods -- 12.4. The Gradient Projection Method -- 12.5. Convergence Rate of the Gradient Projection Method -- 12.6. The Reduced Gradient Method -- 12.7. Convergence Rate of the Reduced Gradient Method -- 12.8.*Variations -- 12.9. Summary -- 12.10. Exercises.
Text of Note
Note continued: 13. Penalty and Barrier Methods -- 13.1. Penalty Methods -- 13.2. Barrier Methods -- 13.3. Properties of Penalty and Barrier Functions -- 13.4. Newton's Method and Penalty Functions -- 13.5. Conjugate Gradients and Penalty Methods -- 13.6. Normalization of Penalty Functions -- 13.7. Penalty Functions and Gradient Projection -- 13.8.*Exact Penalty Functions -- 13.9. Summary -- 13.10. Exercises -- 14. Duality and Dual Methods -- 14.1. Global Duality -- 14.2. Local Duality -- 14.3. Canonical Convergence Rate of Dual Steepest Ascent -- 14.4. Separable Problems and Their Duals -- 14.5. Augmented Lagrangian -- 14.6. The Method of Multipliers -- 14.7. The Alternating Direction Method of Multipliers -- 14.8.`Cutting Plane Methods -- 14.9. Exercises -- 15. Primal-Dual Methods -- 15.1. The Standard Problem -- 15.2.A Simple Merit Function -- 15.3. Basic Primal-Dual Methods -- 15.4. Modified Newton Methods -- 15.5. Descent Properties -- 15.6.`Rate of Convergence.
Text of Note
Note continued: 15.7. Primal-Dual Interior Point Methods -- 15.8. Summary -- 15.9. Exercises -- A. Mathematical Review -- A.1. Sets -- A.2. Matrix Notation -- A.3. Spaces -- A.4. Eigenvalues and Quadratic Forms -- A.5. Topological Concepts -- A.6. Functions -- B. Convex Sets -- B.1. Basic Definitions -- B.2. Hyperplanes and Polytopes -- B.3. Separating and Supporting Hyperplanes -- B.4. Extreme Points -- C. Gaussian Elimination -- D. Basic Network Concepts -- D.1. Flows in Networks -- D.2. Tree Procedure -- D.3. Capacitated Networks.
Text of Note
Note continued: 4.6. The Dual Simplex Method -- 4.7.*The Primal-Dual Algorithm -- 4.8. Summary -- 4.9. Exercises -- 5. Interior-Point Methods -- 5.1. Elements of Complexity Theory -- 5.2.*The Simplex Method Is Not Polynomial-Time -- 5.3.*The Ellipsoid Method -- 5.4. The Analytic Center -- 5.5. The Central Path -- 5.6. Solution Strategies -- 5.7. Termination and Initialization -- 5.8. Summary -- 5.9. Exercises -- 6. Conic Linear Programming -- 6.1. Convex Cones -- 6.2. Conic Linear Programming Problem -- 6.3. Farkas' Lemma for Conic Linear Programming -- 6.4. Conic Linear Programming Duality -- 6.5.Complementarity and Solution Rank of SDP -- 6.6. Interior-Point Algorithms for Conic Linear Programming -- 6.7. Summary -- 6.8. Exercises -- pt. II Unconstrained Problems -- 7. Basic Properties of Solutions and Algorithms -- 7.1. First-Order Necessary Conditions -- 7.2. Examples of Unconstrained Problems -- 7.3. Second-Order Conditions -- 7.4. Convex and Concave Functions.
Text of Note
Note continued: 7.5. Minimization and Maximization of Convex Functions -- 7.6.*Zero-Order Conditions -- 7.7. Global Convergence of Descent Algorithms -- 7.8. Speed of Convergence -- 7.9. Summary -- 7.10. Exercises -- 8. Basic Descent Methods -- 8.1. Line Search Algorithms -- 8.2. The Method of Steepest Descent -- 8.3. Applications of the Convergence Theory -- 8.4. Accelerated Steepest Descent -- 8.5. Newton's Method -- 8.6. Coordinate Descent Methods -- 8.7. Summary -- 8.8. Exercises -- 9. Conjugate Direction Methods -- 9.1. Conjugate Directions -- 9.2. Descent Properties of the Conjugate Direction Method -- 9.3. The Conjugate Gradient Method -- 9.4. The C -- G Method as an Optimal Process -- 9.5. The Partial Conjugate Gradient Method -- 9.6. Extension to Nonquadratic Problems -- 9.7.*Parallel Tangents -- 9.8. Exercises -- 10. Quasi-Newton Methods -- 10.1. Modified Newton Method -- 10.2. Construction of the Inverse -- 10.3. Davidon-Fletcher-Powell Method -- 10.4. The Broyden Family.
0
0
0
0
0
0

PIECE

Title
International Series in Operations Research & Management Science ; 228

TOPICAL NAME USED AS SUBJECT

Linear programming.
Nonlinear programming.
Linear programming.
Lineare Optimierung
Nichtlineare Optimierung
Nonlinear programming.
Optimierung

DEWEY DECIMAL CLASSIFICATION

Number
519
.
72
Edition
23

LIBRARY OF CONGRESS CLASSIFICATION

Class number
T57
.
7
Book number
.
L84
2016

PERSONAL NAME - PRIMARY RESPONSIBILITY

Luenberger, David G.,1937-

PERSONAL NAME - ALTERNATIVE RESPONSIBILITY

Ye, Yinyu

ORIGINATING SOURCE

Date of Transaction
20200617083012.0
Cataloguing Rules (Descriptive Conventions))
rda

ELECTRONIC LOCATION AND ACCESS

Electronic name
 مطالعه متن کتاب 

[Book]

Y

Proposal/Bug Report

Warning! Enter The Information Carefully
Send Cancel
This website is managed by Dar Al-Hadith Scientific-Cultural Institute and Computer Research Center of Islamic Sciences (also known as Noor)
Libraries are responsible for the validity of information, and the spiritual rights of information are reserved for them
Best Searcher - The 5th Digital Media Festival