The role of VEGF-induced PI3K/Akt signalling pathway in head and neck cancer cell migration
General Material Designation
[Thesis]
First Statement of Responsibility
Islam, Mohammad Rafiqul
Subsequent Statement of Responsibility
Ellis, Ian ; Jones, Sarah ; Mossey, Peter
.PUBLICATION, DISTRIBUTION, ETC
Name of Publisher, Distributor, etc.
University of Dundee
Date of Publication, Distribution, etc.
2015
DISSERTATION (THESIS) NOTE
Dissertation or thesis details and type of degree
Thesis (Ph.D.)
Text preceding or following the note
2015
SUMMARY OR ABSTRACT
Text of Note
The PI3K-Akt signalling pathway is a well-established driver of cancer progression. One key process promoted by Akt phosphorylation is tumour cell motility; however the mechanism of VEGF-induced Akt phosphorylation leading to motility remains poorly understood. Previously, it has been shown that Akt phosphorylation, induced by different factors, causes both stimulation and inhibition of motility in different cell types. However, differential phosphorylation of Akt at T308 and S473 residues by VEGF and its role in head and neck cancer cell motility and progression is unknown. The cell lines investigated in this study exhibited a change in phosphorylation of Akt in response to VEGF. However, in terms of motility, VEGF stimulated oral cancer and its associated cell lines, but not normal keratinocytes or oral mucosal fibroblasts. The addition of a PI3 kinase and mTOR inhibitor, inhibited the phosphorylation of Akt and also effectively blocked VEGF-induced oral cancer cell motility, whereas only the PI3 kinase inhibitor blocked oral cancer associated fibroblast cell motility. This study therefore discloses that two different mechanisms of Akt phosphorylation control the motility potential of different cell lines. Akt phosphorylated at both residues controls oral cancer cell motility. Tobacco, alcohol and HPV infection are associated with increased risk of HNSCC. However, little is known about the underlying signalling events influencing risk. It was also aimed to investigate the relationship between these risk factors and Akt phosphorylation, to determine prognostic value. VEGF-positive HNSCC biopsies, with known HPV status, were analysed by immunohistochemistry (IHC) for Akt, phosphorylated at residues S473 and T308. Comparisons between the tissues were carried out using a Mann-Whitney U test. Associations between the variables and continuous immunohistochemical parameters were evaluated with general linear models. Patient characteristics and pAkt IHC score were analysed for possible association with overall survival by Cox proportional hazard models. Immunohistochemistry revealed that cancer patients had significantly higher levels of pAkt T308 than S473 (P < 0.001). Smoking and alcohol were found to be independent risk factors for Akt phosphorylation at T308 (P = 0.022 and 0.027, respectively). Patients with tumours positive for HPV or pAkt S473 had a poorer prognosis (P = 0.005, and 0.004, respectively). Patients who were heavy drinkers were more likely to die than non-drinkers (P = 0.003). Patients with low pAkt T308 were more likely to be HPV positive (P = 0.028). Non-drinkers were also found to have lower levels of pAkt T308 and were more likely to have tumours positive for HPV than heavy drinkers (P = 0.044 and 0.007, respectively). This study suggests different mechanisms of carcinogenesis are initiated by smoking, alcohol and HPV. The resultant data propose higher phosphorylation of Akt at T308 as a reliable biomarker for smoking and alcohol induced HNSCC progression and higher phosphorylation of Akt at S473 as a prognostic factor for HNSCC.
TOPICAL NAME USED AS SUBJECT
Cell migration; Head and neck cancer; Cell & molecular biology; Cell signalling