Doping of Polymers with ZnO Nanostructures for Optoelectronic and Sensor Applications.
General Material Designation
[Book]
First Statement of Responsibility
Aga
.PUBLICATION, DISTRIBUTION, ETC
Name of Publisher, Distributor, etc.
INTECH Open Access Publisher
Date of Publication, Distribution, etc.
2010
SUMMARY OR ABSTRACT
Text of Note
As separate materials, polymers and ZnO are already considered to be important technologically. They have found several commercial applications in optoelectronics and sensors. Despite that, research activities involving these materials are still in full swing. For example, there is a lot of effort in developing high efficient polymeric solar cells and light emitting diodes. One of the big challenges in this area is long term stability. For ZnO, most of its expected applications, such as UV light emitters, spin functional devices, chemical sensors, surface acoustic wave devices and transparent conductors, are still in the laboratory level. This is mainly because ZnO is prone to material defects that it becomes very difficult to obtain reproducible device performance and reliability. Clearly, there is still a considerable work to be done with ZnO alone, but it is worthwhile to broaden its potential as a technological material. In this manuscript, a more unique role of ZnO, which is as a dopant to polymers, has been presented. This is an area of research, which is just beginning to be explored. Relevant publications are still limited but they report some intriguing observations that may have novel optoelectronic and sensor applications. The interaction of ZnO with polymers may provide ways of obtaining unique or enhanced optical and electronic properties in polymer nanocomposites. Thus, by doping polymers with ZnO, new applications may be realized without losing the benefits offered by polymers in terms of processing, scalability and mechanical flexibility.