the Atiyah-Singer index formula and gauge-theoretic physics
First Statement of Responsibility
B. Booss; D.D. Bleecker. Transl. by D.D. Bleecker and A. Mader.
EDITION STATEMENT
Edition Statement
[2. Aufl.]
.PUBLICATION, DISTRIBUTION, ETC
Place of Publication, Distribution, etc.
New York ; Berlin ; Heidelberg ; Tokyo
Name of Publisher, Distributor, etc.
Springer
Date of Publication, Distribution, etc.
[1989]
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
XVI, 451 Seiten : Diagramme.
SERIES
Series Title
Universitext
GENERAL NOTES
Text of Note
Literaturverz. S. 417 - 427.
CONTENTS NOTE
Text of Note
I. Operators with Index.- 1. Fredholm Operators.- A. Hierarchy of Mathematical Objects.- B. Concept of Fredholm Operator.- 2. Algebraic Properties. Operators of Finite Rank.- A. The Snake Lemma.- B. Operators of Finite Rank and Fredholm Integral Equations.- 3. Analytic Methods. Compact Operators.- A. Analytic Methods.- B. The Adjoint Operator.- C. Compact Operators.- D. The Classical Integral Operators.- 4. The Fredholm Alternative.- A. The Riesz Lemma.- B. Sturm-Liouville Boundary-Value Problem.- 5. The Main Theorems.- A. The Calkin Algebra.- B. Perturbation Theory.- C. Homotopy-Invariance of the Index.- 6. Families of Invertible Operators. Kuiper's Theorem.- A. Homotopies of Operator-Valued Functions.- B. The Theorem of Kuiper.- 7. Families of Fredholm Operators. Index Bundles.- A. The Topology of F.- B. The Construction of Index Bundles.- C. The Theorem of Atiyah-Janich.- D. Homotopy and Unitary Equivalence.- 8. Fourier Series and Integrals (Fundamental Principles).- A. Fourier Series.- B. The Fourier Integral.- C. Higher Dimensional Fourier Integrals.- 9. Wiener-Hopf Operators.- A. The Reservoir of Examples of Fredholm Operators.- B. Origin and Fundamental Significance of Wiener-Hopf Operators.- C. The Characteristic Curve of a Wiener-Hopf Operator.- D. Wiener-Hopf Operators and Harmonic Analysis.- E. The Discrete Index Formula.- F. The Case of Systems.- G. The Continuous Analogue.- II. Analysis on Manifolds.- 1. Partial Differential Equations.- A. Linear Partial Differential Equations.- B. Elliptic Differential Equations.- C. Where Do Elliptic Differential Operators Arise?.- D. Boundary-Value Conditions.- E. Main Problems of Analysis and the Index Problem.- F. Numerical Aspects.- G. Elementary Examples.- 2. Differential Operators over Manifolds.- A. Motivation.- B. Differentiable Manifolds - Foundations.- C. Geometry of C? Mappings.- D. Integration on Manifolds.- E. Differential Operators on Manifolds.- F. Manifolds with Boundary.- 3. Pseudo-Differential Operators.- A. Motivation.- B. "Canonical" Pseudo-Differential Operators.- C. Pseudo-Differential Operators on Manifolds.- D. Approximation Theory for Pseudo-Differential Operators.- 4. Sobolev Spaces (Crash Course).- A. Motivation.- B. Definition.- C. The Main Theorems on Sobolev Spaces.- D. Case Studies.- 5. Elliptic Operators over Closed Manifolds.- A. Continuity of Pseudo-Differential Operators.- B. Elliptic Operators.- 6. Elliptic Boundary-Value Systems I (Differential Operators).- A. Differential Equations with Constant Coefficients.- B. Systems of Differential Equations with Constant Coefficients.- C. Variable Coefficients.- 7. Elliptic Differential Operators of First Order with Boundary Conditions.- A. The Topological Interpretation of Boundary-Value Conditions (Case Study).- B. Generalizations (Heuristic).- 8. Elliptic Boundary-Value Systems II (Survey).- A. The Poisson Principle.- B. The Green Algebra.- C. The Elliptic Case.- III. The Atiyah-Singer Index Formula.- 1. Introduction to Algebraic Topology.- A. Winding Numbers.- B. The Topology of the General Linear Group.- C. The Ring of Vector Bundles.- D. K-Theory with Compact Support.- E. Proof of the Periodicity Theorem of R. Bott.- 2. The Index Formula in the Euclidean Case.- A. Index Formula and Bott Periodicity.- B. The Difference Bundle of an Elliptic Operator.- C. The Index Formula.- 3. The Index Theorem for Closed Manifolds.- A. The Index Formula.- B. Comparison of the Proofs: The Cobordism Proof.- C. Comparison of the Proofs: The Imbedding Proof.- D. Comparison of the Proofs: The Heat Equation Proof.- 4. Applications (Survey).- A. Cohomological Formulation of the Index Formula.- B. The Case of Systems (Trivial Bundles).- C. Examples of Vanishing Index.- D. Euler Number and Signature.- E. Vector Fields on Manifolds.- F. Abelian Integrals and Riemann Surfaces.- G. The Theorem of Riemann-Roch-Hirzebruch.- H. The Index of Elliptic Boundary-Value Problems.- J. Real Operators.- K. The Lefsehetz Fixed-Point Formula.- L. Analysis on Symmetric Spaces.- M. Further Applications.- IV. The Index Formula and Gauge-Theoretical Physics.- 1. Physical Motivation and Overview.- A. Classical Field Theory.- B. Quantum Theory.- 2. Geometric Preliminaries.- A. Principal G-Bundles.- B. Connections and Curvature.- C. Equivariant Forms and Associated Bundles.- D. Gauge Transformations.- E. Curvature in Riemannian Geometry.- F. Bochner-Weitzenboeck Formulas.- G. Chern Classes as Curvature Forms.- H. Holonomy.- 3. Gauge-Theoretic Instantons.- A. The Yang-Mills Functional.- B. Instantons on Euclidean 4-Space.- C. Linearization of the "Manifold" of Moduli of Self-Dual Connections.- D. Manifold Structure for Moduli of Self-Dual Connections.- E. Gauge-Theoretic Topology in Dimension Four.- Appendix: What are Vector Bundles?.- Literature.- Index of Notation Parts I, II, III.- IV.- Index of Names/Authors.
PARALLEL TITLE PROPER
Parallel Title
Topologie und Analysis.
TOPICAL NAME USED AS SUBJECT
Analysis.
Gauge-Theorie.
Topologie.
LIBRARY OF CONGRESS CLASSIFICATION
Class number
QA329
Book number
.
B366
1989
PERSONAL NAME - PRIMARY RESPONSIBILITY
B. Booss; D.D. Bleecker. Transl. by D.D. Bleecker and A. Mader.