1 Sets --; 1.1 Sets --; 1.2 Subsets --; 1.3 Intersection --; 1.4 Union --; 1.5 The algebra of sets --; 1.6 Difference and complement --; 1.7 Pairs. Product of sets --; 1.8 Sets of sets --; Exercises --; 2 Equivalence relations --; 2.1 Relations on a set --; 2.2 Equivalence relations --; 2.3 Partitions --; 2.4 Equivalence classes --; 2.5 Congruence of integers --; 2.6 Algebra of congruences --; Exercises --; 3 Maps --; 3.1 Maps --; 3.2 Equality of maps --; 3.3 Injective, surjective, bijective maps. Inverse maps. --; 3.4 Product of maps --; 3.5 Identity maps --; 3.6 Products of bijective maps --; 3.7 Permutations --; 3.8 Similar sets --; Exercises --; 4 Groups --; 4.1 Binary operations on a set --; 4.2 Commutative and associative operations --; 4.3 Units and zeros --; 4.4 Gruppoids, semigroups and groups --; 4.5 Examples of groups --; 4.6 Elementary theorems on groups --; Exercises --; 5 Subgroups --; 5.1 Subsets closed to an operation --; 5.2 Subgroups --; 5.3 Subgroup generated by a subset --; 5.4 Cyclic groups --; 5.5 Groups acting on sets --; 5.6 Stabilizers --; Exercises --; 6 Cosets --; 6.1 The quotient sets of a subgroup --; 6.2 Maps of quotient sets --; 6.3 Index. Transversals --; 6.4 Lagrange's theorem --; 6.5 Orbits and stabilizers --; 6.6 Conjugacy classes. Centre of a group --; 6.7 Normal subgroups --; 6.8 Quotient groups --; Exercises --; 7 Homomorphisms --; 7.1 Homomorphisms --; 7.2 Some lemmas on homomorphisms --; 7.3 Isomorphism --; 7.4 Kernel and image --; 7.5 Lattice diagrams --; 7.6 Homomorphisms and subgroups --; 7.7 The second isomorphism theorem --; 7.8 Direct products and direct sums of groups --; Exercises --; 8 Rings and fields --; 8.1 Definition of a ring. Examples --; 8.2 Elementary theorems of rings. Subrings --; 8.3 Integral domains --; 8.4 Fields. Division rings --; 8.5 Polynomials --; 8.6 Homomorphisms. Isomorphism of rings --; 8.7 Ideals --; 8.8 Quotient rings --; 8.9 The Homomorphism Theorem for rings --; 8.10 Principal ideals in a commutative ring --; 8.11 The Division Theorem for polynomials --; 8.12 Polynomials over a field --; 8.13 Divisibility in Z and in F[X] --; 8.14 Euclid's algorithm --; Exercises --; 9 Vector spaces and matrices --; 9.1 Vector spaces over a field --; 9.2 Examples of vector spaces --; 9.3 Two geometric interpretations of vectors --; 9.4 Subspaces --; 9.5 Linear combinations. Spanning sets --; 9.6 Linear dependence. Basis of a vector space --; 9.7 The Basis Theorem. Dimension --; 9.8 Linear maps. Isomorphism of vector spaces --; 9.9 Matrices --; 9.10 Laws of matrix algebra. The ring Mn(F) --; 9.11 Row space of a matrix. Echelon matrices --; 9.12 Systems of linear equations --; 9.13 Matrices and linear maps --; 9.14 Invertible matrices. The group GLn(F) --; Exercises --; Tables --; List of notations --; Answers to exercises.