a search for explanatory principles below the level of physics.
First Statement of Responsibility
A F Parker-Rhodes
.PUBLICATION, DISTRIBUTION, ETC
Place of Publication, Distribution, etc.
[Place of publication not identified]
Name of Publisher, Distributor, etc.
Springer
Date of Publication, Distribution, etc.
2013
CONTENTS NOTE
Text of Note
I: Theory.- I/Introduction.- 1.A. The Concept of Indistinguishability.- 1.B. Primary and Secondary Indistinguishables.- 1.C. Classes of Indistinguishables.- 1.D. Correlation and Predication.- 1.E. The Triparity of Notations.- 1.F. Levels of Notation.- 1.G. Syntactic Specification of the Notations.- II/Semantic Theory of the Notation F.- 2.A. The Meaning of Meaning.- 2.B. The Pair Functors of U.- 2.C. Classifying Functors.- 2.D. Initial Theorems in U.- 2.E. Indistinguishable Arguments - Cases (a) & (b).- 2.F. Enchained Functors - Cases (c) & (d).- 2.G. Classifying Functors - Cases (e) to (g).- 2.H. Declassifying & Confounding Functors.- 2.J. Concurrence of Symbols.- 2.K. Concurrence in V.- 2.L. Compound Statements and Quantification.- 2.M. Comparison of Biparitous and Triparitous Quantification.- 2.N. Quantification of Definiends.- III/The Physical Relevance of Indistinguishables.- 3.A. The Concept of 'Planes'.- 3.B. The Inchoative Plane.- 3.C. Observability of the Inchoative.- 3.D. Methodology.- 3.E. Types of Indistinguishables.- 3.F. The Principle of Coherence.- 3.G. Valid Representations.- 3.H. The Construction of Representations.- 3.J. The Irreducibility of the Physical Plane.- 3.K. The Combinatorial Hierarchy.- IV/Sort Theory - Axioms and Definitions.- 4.A. Indefinables of T.- 4.B. Method of Verifying Concurrence.- 4.C. Definitions in the Inferential System.- 4.D. Definitions in T - Basics.- 4.E. The Conditional Quantification Functor.- 4.F. Definition and Classification of Sorts.- 4.G. Some Classifying Functors.- 4.H. Ordered Pairs.- 4.J. Some Confounding Functors.- 4.K. Miscellaneous Functors over Sorts.- V/Sort Theory - Mappings.- 5.A. Mappings and Functions.- 5.B. Mappings from and to Perfect Sorts.- 5.C. The Closure of a Sort.- 5.D. A Classification of Sort Mappings.- 5.E. Cardinality of Perfect Sorts.- 5.F. The Invariant Subdomain Theorem.- 5.G. Functions of Two Arguments over a Perfect Sort.- 5.H. Values of the Functions.- 5.J. Properties of the Functions.- 5.K. Two-Argument Functions over Derived Perfect Domains.- 5.L. Functions of More than Two Arguments.- 5.M. Infinite Perfect Sorts.- 5.N. Operational Tables of the Functors.- VI/Representations of Initial Sorts.- 6.A. Initial and Superstruct Sorts.- 6.B. Complexes on an Initial Sort.- 6.C. Representation of