Menu
Home
Advanced Search
Directory of Libraries
عنوان
Integral transforms and their applications
پدید آورنده
Lokenath Debnath, Dambaru Bhatta.
موضوع
Integral transforms.,Mathematics -- Textbooks.,Mathematics.
رده
QA432
.
L654
2015
کتابخانه
Center and Library of Islamic Studies in European Languages
محل استقرار
استان:
Qom
ـ شهر:
Qom
تماس با کتابخانه :
32910706
-
025
INTERNATIONAL STANDARD BOOK NUMBER
(Number (ISBN
1482223589
(Number (ISBN
9781482223583
NATIONAL BIBLIOGRAPHY NUMBER
Number
b574739
TITLE AND STATEMENT OF RESPONSIBILITY
Title Proper
Integral transforms and their applications
General Material Designation
[Book]
First Statement of Responsibility
Lokenath Debnath, Dambaru Bhatta.
EDITION STATEMENT
Edition Statement
Third edition
.PUBLICATION, DISTRIBUTION, ETC
Place of Publication, Distribution, etc.
Boca Raton
Name of Publisher, Distributor, etc.
Taylor & Francis
Date of Publication, Distribution, etc.
2015
GENERAL NOTES
Text of Note
A CRC title.
CONTENTS NOTE
Text of Note
Machine generated contents note: 1.1. Brief Historical Introduction --; 1.2. Fourier Series and Fourier Transforms --; 1.3. Gabor Transforms --; 1.4. Basic Concepts and Definitions --; 2.1. Introduction --; 2.2. Fourier Integral Formulas --; 2.3. Definition of the Fourier Transform and Examples --; 2.4. Fourier Transforms of Generalized Functions --; 2.5. Basic Properties of Fourier Transforms --; 2.6. Poisson's Summation Formula --; 2.7. Shannon Sampling Theorem --; 2.8. Gibbs Phenomenon --; 2.9. Heisenberg's Uncertainty Principle --; 2.10. Applications of Fourier Transforms to Ordinary Differential Equations --; 2.11. Solutions of Integral Equations --; 2.12. Solutions of Partial Differential Equations --; 2.13. Fourier Cosine and Sine Transforms with Examples --; 2.14. Properties of Fourier Cosine and Sine Transforms --; 2.15. Applications of Fourier Cosine and Sine Transforms to Partial Differential Equations --; 2.16. Evaluation of Definite Integrals --; 2.17. Applications of Fourier Transforms in Mathematical Statistics --; 2.18. Multiple Fourier Transforms and Their Applications --; 2.19. Exercises --; 3.1. Introduction --; 3.2. Definition of the Laplace Transform and Examples --; 3.3. Existence Conditions for the Laplace Transform --; 3.4. Basic Properties of Laplace Transforms --; 3.5. Convolution Theorem and Properties of Convolution --; 3.6. Differentiation and Integration of Laplace Transforms --; 3.7. Inverse Laplace Transform and Examples --; 3.8. Tauberian Theorems and Watson's Lemma --; 3.9. Exercises --; 4.1. Introduction --; 4.2. Solutions of Ordinary Differential Equations --; 4.3. Partial Differential Equations, Initial and Boundary Value Problems --; 4.4. Solutions of Integral Equations --; 4.5. Solutions of Boundary Value Problems --; 4.6. Evaluation of Definite Integrals --; 4.7. Solutions of Difference and Differential-Difference Equations --; 4.8. Applications of the Joint Laplace and Fourier Transform --; 4.9. Summation of Infinite Series --; 4.10. Transfer Function and Impulse Response Function of a Linear System --; 4.11. Double Laplace Transform, Functional and Partial Differential Equations --; 4.12. Exercises --; 5.1. Introduction --; 5.2. Historical Comments --; 5.3. Fractional Derivatives and Integrals --; 5.4. Applications of Fractional Calculus --; 5.5. Exercises --; 6.1. Introduction --; 6.2. Laplace Transforms of Fractional Integrals and Fractional Derivatives --; 6.3. Fractional Ordinary Differential Equations --; 6.4. Fractional Integral Equations --; 6.5. Initial Value Problems for Fractional Differential Equations --; 6.6. Green's Functions of Fractional Differential Equations --; 6.7. Fractional Partial Differential Equations --; 6.8. Exercises --; 7.1. Introduction --; 7.2. Hankel Transform and Examples --; 7.3. Operational Properties of the Hankel Transform --; 7.4. Applications of Hankel Transforms to Partial Differential Equations --; 7.5. Exercises --; 8.1. Introduction --; 8.2. Definition of the Mellin Transform and Examples --; 8.3. Basic Operational Properties of Mellin Transforms --; 8.4. Applications of Mellin Transforms --; 8.5. Mellin Transforms of the Weyl Fractional Integral and the Weyl Fractional Derivative --; 8.6. Application of Mellin Transforms to Summation of Series --; 8.7. Generalized Mellin Transforms --; 8.8. Exercises --; 9.1. Introduction --; 9.2. Definition of the Hilbert Transform and Examples --; 9.3. Basic Properties of Hilbert Transforms --; 9.4. Hilbert Transforms in the Complex Plane --; 9.5. Applications of Hilbert Transforms --; 9.6. Asymptotic Expansions of One-Sided Hilbert Transforms --; 9.7. Definition of the Stieltjes Transform and Examples --; 9.8. Basic Operational Properties of Stieltjes Transforms --; 9.9. Inversion Theorems for Stieltjes Transforms --; 9.10. Applications of Stieltjes Transforms --; 9.11. Generalized Stieltjes Transform --; 9.12. Basic Properties of the Generalized Stieltjes Transform --; 9.13. Exercises --; 10.1. Introduction --; 10.2. Definitions of the Finite Fourier Sine and Cosine Transforms and Examples --; 10.3. Basic Properties of Finite Fourier Sine and Cosine Transforms --; 10.4. Applications of Finite Fourier Sine and Cosine Transforms --; 10.5. Multiple Finite Fourier Transforms and Their Applications --; 10.6. Exercises --; 11.1. Introduction --; 11.2. Definition of the Finite Laplace Transform and Examples --; 11.3. Basic Operational Properties of the Finite Laplace Transform --; 11.4. Applications of Finite Laplace Transforms --; 11.5. Tauberian Theorems --; 11.6. Exercises --; 12.1. Introduction --; 12.2. Dynamic Linear Systems and Impulse Response --; 12.3. Definition of the Z Transform and Examples --; 12.4. Basic Operational Properties of Z Transforms --; 12.5. Inverse Z Transform and Examples --; 12.6. Applications of Z Transforms to Finite Difference Equations --; 12.7. Summation of Infinite Series --; 12.8. Exercises --; 13.1. Introduction --; 13.2. Definition of the Finite Hankel Transform and Examples --; 13.3. Basic Operational Properties --; 13.4. Applications of Finite Hankel Transforms --; 13.5. Exercises --; 14.1. Introduction --; 14.2. Definition of the Legendre Transform and Examples --; 14.3. Basic Operational Properties of Legendre Transforms --; 14.4. Applications of Legendre Transforms to Boundary Value Problems --; 14.5. Exercises --; 15.1. Introduction --; 15.2. Definition of the Jacobi Transform and Examples --; 15.3. Basic Operational Properties --; 15.4. Applications of Jacobi Transforms to the Generalized Heat Conduction Problem --; 15.5. Gegenbauer Transform and Its Basic Operational Properties --; 15.6. Application of the Gegenbauer Transform --; 16.1. Introduction --; 16.2. Definition of the Laguerre Transform and Examples --; 16.3. Basic Operational Properties --; 16.4. Applications of Laguerre Transforms --; 16.5. Exercises --; 17.1. Introduction --; 17.2. Definition of the Hermite Transform and Examples --; 17.3. Basic Operational Properties --; 17.4. Exercises --; 18.1. Introduction --; 18.2. Radon Transform --; 18.3. Properties of the Radon Transform --; 18.4. Radon Transform of Derivatives --; 18.5. Derivatives of the Radon Transform --; 18.6. Convolution Theorem for the Radon Transform --; 18.7. Inverse of the Radon Transform and the Parseval Relation --; 18.8. Applications of the Radon Transform --; 18.9. Exercises --; 19.1. Brief Historical Remarks --; 19.2. Continuous Wavelet Transforms --; 19.3. Discrete Wavelet Transform --; 19.4. Examples of Orthonormal Wavelets --; 19.5. Exercises --; A-1. Gamma, Beta, and Error Functions --; A-2. Bessel and Airy Functions --; A-3. Legendre and Associated Legendre Functions --; A-4. Jacobi and Gegenbauer Polynomials --; A-5. Laguerre and Associated Laguerre Functions --; A-6. Hermite Polynomials and Weber-Hermite Functions --; A-7. Mittag-Leffler Function --; B-1. Fourier Transforms --; B-2. Fourier Cosine Transforms --; B-3. Fourier Sine Transforms --; B-4. Laplace Transforms --; B-5. Hankel Transforms --; B-6. Mellin Transforms --; B-7. Hilbert Transforms --; B-8. Stieltjes Transforms --; B-9. Finite Fourier Cosine Transforms --; B-10. Finite Fourier Sine Transforms --; B-11. Finite Laplace Transforms --; B-12. Z Transforms --; B-13. Finite Hankel Transforms --; 2.19. Exercises --; 3.9. Exercises --; 4.12. Exercises --; 6.8. Exercises --; 7.5. Exercises --; 8.8. Exercises --; 9.13. Exercises --; 10.6. Exercises --; 11.6. Exercises --; 12.8. Exercises --; 13.5. Exercises --; 16.5. Exercises --; 17.4. Exercises --; 18.9. Exercises --; 19.5. Exercises.
TOPICAL NAME USED AS SUBJECT
Integral transforms.
Mathematics -- Textbooks.
Mathematics.
LIBRARY OF CONGRESS CLASSIFICATION
Class number
QA432
Book number
.
L654
2015
PERSONAL NAME - PRIMARY RESPONSIBILITY
Lokenath Debnath, Dambaru Bhatta.
PERSONAL NAME - ALTERNATIVE RESPONSIBILITY
Dambaru Bhatta
Lokenath Debnath
ELECTRONIC LOCATION AND ACCESS
Electronic name
مطالعه متن کتاب
[Book]
Y
Proposal/Bug Report
×
Proposal/Bug Report
×
Warning!
Enter The Information Carefully
Error Report
Proposal