edited by James R. Chelikowsky, Alfonso Franciosi.
.PUBLICATION, DISTRIBUTION, ETC
Place of Publication, Distribution, etc.
Berlin, Heidelberg
Name of Publisher, Distributor, etc.
Springer Berlin Heidelberg
Date of Publication, Distribution, etc.
1991
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
(xiv, 341 pages 182 illustrations)
SERIES
Series Title
Springer series in solid-state sciences, 95.
CONTENTS NOTE
Text of Note
1. Introduction --; References --; 2. The Simplest Ab Initio Theory of Electronic Structure --; 2.1 Tight-Binding Theory --; 2.2 Universal Parameters --; 2.3 A Diatomic Molecule, N2 --; 2.4 A Simplification Using Hybrids --; 2.5 Cohesion of N2 --; 2.6 Polarizability of N2 --; 2.7 Tetrahedral Semiconductor Bonds --; 2.8 Semiconductor Energy Bands --; 2.9 Cohesion in Semiconductors --; 2.10 The Dielectric Properties --; 2.11 Ionic Crystals --; 2.12 Covalency in Ionic Compounds --; 2.13 Transition-Metal Compounds --; 2.14 Summary --; References --; 3. Theory of Electronic Excitations in Solids --; 3.1 Quasiparticle Theory of Electron Excitations --; 3.2 Band Gaps and Excitation Spectra of Bulk Crystals --; 3.3 Surfaces, Interfaces, Superlattices, and Clusters --; 3.4 Model Dielectric Matrix --; 3.5 Summary and Conclusions --; References --; 4. Determination of the Electronic Structure of Solids --; 4.1 Band Mapping with Photoemission and Inverse Photoemission --; 4.2 Understanding Semiconductors from First Principles --; 4.3 Magnetic Storage and Thin Film Magnetism --; 4.4 Optoelectronics and Excited State Spectroscopy --; 4.5 Spatial Resolution --; 4.6 Packaging, Polymers, and Core Levels --; 4.7 Summary --; References --; 5. Predicting the Properties of Solids, Clusters and Superconductors --; 5.1 Background --; 5.2 Surfaces and Interfaces --; 5.3 Total Energies and Structural Properties --; 5.4 Compressibilities and Empirical Theories --; 5.5 Metallic Clusters --; 5.6 Superconductivity --; 5.7 Conclusions --; References --; 6. High-Temperature Superconductivity: The Experimental Situation --; 6.1 Structural and Chemical Nature of the New Materials --; 6.2 The Superconducting State: Macroscopic Properties --; 6.3 Microscopic Superconducting Properties --; 6.4 Theoretical Considerations and Discussion --; References --; 7. Surface Structure and Bonding of Tetrahedrally Coordinated Compound Semiconductors --; 7.1 Key Concepts in Semiconductor Surface Chemistry --; 7.2 Zincblende (110) Surfaces --; 7.3 Wurtzite Cleavage Surfaces --; 7.4 Adsorption on Zincblende (110) Surfaces --; 7.5 Synopsis --; References --; 8. Formation and Properties of Metal-Semiconductor Interfaces --; 8.1 Experimental Techniques and Analysis --; 8.2 Interface Formation at 300 K --; 8.3 Low-Temperature Interface Formation --; 8.4 Surface Photovoltaic Effects --; 8.5 Interface Formations with Metal Ions --; 8.6 Interfaces Formed by Metal Cluster Deposition --; 8.7 Prospects and Future Developments --; References --; 9. Electronic States in Semiconductor Superlattices and Quantum Wells: An Overview --; 9.1 Envelope-Function Description of Electronic States --; 9.2 External Fields --; 9.3 Excitons in Quantum Wells --; References --; 10. Photonic and Electronic Devices Based on Artificially Structured Semiconductors --; 10.1 Resonant Tunneling Bipolar Transistors with a Double Barrier in the Base --; 10.2 Devices with Multiple Peak I-V Characteristics and Multiple-State RTBTs --; 10.3 Circuit Applications of Multiple-State RTBTs --; 10.4 Gated Quantum Well and Superlattice-Base Transistors --; 10.5 Quasi-Electric Fields in Graded-Gap Materials --; 10.6 Heterojunction Bipolar Transistors with Graded-Gap Layers --; 10.7 Multilayer Sawtooth Materials --; 10.8 AlGaAs Floating-Gate Memory Devices with Graded-Gap Injector --; References --; 11. Quantum Structural Diagrams --; 11.1 Interatomic Forces --; 11.2 Ionic Crystals --; 11.3 Covalent Crystals --; 11.4 Metallic Compounds and Alloys --; 11.5 Molecular Structure Diagrams --; 11.6 Deductive Calculations --; 11.7 Prospects --; References --; 12. Ion and Laser Beam Processing of Semiconductors: Phase Transitions in Silicon --; 12.1 Ion Implantation --; 12.2 Amorphization and Solid Phase Epitaxy --; 12.3 Ion-Beam Induced Epitaxy, Diffusion and Segregation --; 12.4 Thermodynamic and Kinetic Properties of Amorphous Si --; 12.5 Liquid Phase Crystal Growth and Dopant Segregation --; 12.6 Melting of Amorphous Si: A First-Order Phase Transition --; 12.7 Conclusion: Undercooling and Explosive Crystallization --; 12.8 Update: The State of Amorphous Si --; References.
SUMMARY OR ABSTRACT
Text of Note
This is a personal, innovative, and exciting view of the current status of the field of electronic materials. It provides a graduate-level introduction to new classes of electronic materials and indicates the most promising new avenues of theoretical and experimental investigation, capturing the challenge of the coming age of modern materials science. Researchers in the field of electronic materials will find here a general introduction to some of the most modern techniques of computer-assisted modeling and the most powerful experimental characterization tools. Nonspecialists will appreciate the broad survey and should find this book useful as a reference work.
TOPICAL NAME USED AS SUBJECT
Chemical engineering.
Production of electric energy or power.
Surfaces (Physics)
LIBRARY OF CONGRESS CLASSIFICATION
Class number
TK7871
Book number
.
E358
1991
PERSONAL NAME - PRIMARY RESPONSIBILITY
edited by James R. Chelikowsky, Alfonso Franciosi.