1. Reactivity of Surfaces.- 1.1 Chemisorbed Phases-Alterations of the Substrate Bonds.- 1.2 Chemical Transformation-Alteration of the Adsorbate Bonds.- 1.3 Nonlinear Dynamics in Surface Reactions.- 1.4 Conclusion.- References.- 2. New Mechanisms for the Activation and Desorption of Molecules at Surfaces.- 2.1 Translational Activation of CH4.- 2.2 Collision Induced Dissociative Chemisorption and Collision Induced Desorption of CH4.- 2.3 New Methods for Activation: New Syntheses.- References.- 3. Photochemistry at Adsorbate-Metal Interfaces: Intra-adsorbate Bond Breaking.- 3.1 General Considerations.- 3.2 Experimental Considerations.- 3.3 Examples.- 3.3.1 Methyl Bromide on Pt{111} and Ag{111}.- 3.3.2 Oxygen on Pt{111}.- 3.3.3 Nitrogen Dioxide on NO-Covered Pd{111}.- 3.4 Prospects.- References.- 4. Desorption Induced by Electronic Transitions.- 4.1 Mechanisms of DIET.- 4.1.1 Background; Desorption of Neutrals.- 4.1.2 Positive Ions.- 4.1.3 Negative Ions.- 4.1.4 Photon Stimulated Desorption; Surface Photochemistry.- 4.1.5 Use of ESD in Surface Structure Determination: ESDIAD.- 4.2 Experimental Procedures for Positive and Negative Ion ESDIAD.- 4.3 DIET Studies of a Model System: PF3 on Ru{0001}.- 4.3.1 ESDIAD of Positive and Negative Ions: Background.- 4.3.2 DIET of PF3.- 4.3.3 Electron- and Photon-Induced Damage to PF3.- 4.4 Summary and Conclusions.- References.- 5. Transition Metal Clusters and Isolated Atoms in Zeolite Cages.- 5.1 Preparation of Encaged Particles.- 5.2 Thermodynamic "Driving Forces" Favoring Locations and Particle Morphology.- 5.3 Mechanisms of Metal Particle Formation.- 5.4 Identification of Isolated Atoms and Electron Deficient Particles.- 5.5 Formation of Bimetallic Particles.- 5.6 Summary and Conclusions.- References.- 6. Studies of Bonding and Reaction on Metal Surfaces Using Second-Harmonic and Sum-Frequency Generation.- 6.1 Second-Harmonic Generation.- 6.1.1 Background.- 6.1.2 Theory.- 6.1.3 Experimental Methods.- 6.1.4 Experimental Results.- 6.1.5 SHG Summary.- 6.2 Sum-Frequency Generation.- 6.2.1 Introduction and Background.- 6.2.2 Theory.- 6.2.3 Experimental Methods.- 6.2.4 Experimental Results.- 6.2.5 SFG Summary.- References.- 7. Surface Physics and Chemistry in High Electric Fields.- 7.1 Electric Fields at Metal Surfaces.- 7.2 Dispersion and Polarization Forces.- 7.3 Field-Induced Chemisorption.- 7.4 Field Evaporation.- 7.5 Thermal Field Desorption.- 7.6 Field-Induced Chemistry.- 7.7 Concluding Remarks.- References.- 8. Chaos in Surface Dynamics.- 8.1 Concepts in Chaos.- 8.2 Examples.- 8.2.1 The Direct Signal.- 8.2.2 Power Spectrum.- 8.2.3 Autocorrelation Functions.- 8.2.4 Poincare Map/Surface-of-Section.- 8.2.5 Summary.- 8.3 Period Doubling.- 8.3.1 Driven Oscillator.- 8.3.2 Logistic Map.- 8.3.3 Oscillatory Surface Reactions.- 8.4 Hamiltonian Systems.- 8.4.1 Vibrational Spectroscopy.- 8.4.2 Scattering.- References.- 9. Ten Years of Low Energy Positron Diffraction.- 9.1 Low-Energy Electron Diffraction.- 9.2 The First LEPD Experiments (1979).- 9.2.1 Comparison of LEPD and LEED Cu Results.- 9.2.2 Predicted Advantages of LEPD over LEED.- 9.3 Brightness Enhancement.- 9.4 Surface Structure Determinations with Modern LEPD: CdSe{1010} and CdSe{1120}.- 9.4.1 Relaxation Models.- 9.4.2 I-V Profile Measurements.- 9.4.3 Structure Analysis.- 9.4.4 Differences Between LEED and LEPD Structural Determinations.- 9.5 Positron Diffraction at Very Low Energy.- 9.5.1 Threshold Effects in LEPD from NaF and LiF.- 9.5.2 Lowest Order LEPD Bragg Peak and the Darwin Top Hat.- 9.6 Conclusions.- References.- 10. Time-of-Flight Scattering and Recoiling Spectrometry (TOF-SARS) for Surface Analysis.- 10.1 Historical Review.- 10.2 Experimental Method.- 10.2.1 TOF-SARS Spectrometer.- 10.2.2 Comparison to Rutherford Backscattering (RBS).- 10.3 Examples of Experimental Results.- 10.3.1 TOF Spectra.- 10.3.2 Comparison of TOF-SARS to LEED and AES.- 10.3.3 Structure Analysis.- 10.3.4 Monitoring Sputtering Induced Damage.- 10.3.5 Surface Semichanneling.- 10.3.6 Ion Fractions.- 10.3.7 Ion Induced Auger Electron Spectra.- 10.4 Summary.- References.- 11. Scanning Electron Microscopy with Polarization Analysis: Studies of Magnetic Microstructure.- 11.1 Spin Polarization of Secondary Electrons.- 11.2 Experimental.- 11.2.1 Electron Microscope and Specimen Chamber.- 11.2.2 Transport Optics and Polarization Analyzers.- 11.2.3 Image Processing.- 11.3 SEMPA Measurement Examples.- 11.3.1 Iron Crystals.- 11.3.2 Cobalt Crystals.- 11.3.3 Ferromagnetic Metallic Glasses.- 11.3.4 Domain Walls.- 11.3.5 Magnetic Storage Media.- 11.4 Summary and Future Directions.- References.- 12. Low Energy Electron Microscopy.- 12.1 Fundamentals of LEEM.- 12.1.1 Resolution and Intensity Transmission.- 12.1.2 Intensity.- 12.1.3 Contrast.- 12.1.4 Instrumental Aspects.- 12.2 LEEM Studies of Clean Surfaces.- 12.3 LEEM Studies of Surface Layers.- 12.4 Outlook.- 12.5 Summary.- References.- 13. Atomic Scale Surface Characterization with Photoemission of Adsorbed Xenon (PAX).- 13.1 Introduction.- 13.2 Principles of the PAX-Technique.- 13.2.1 Photoemission Spectra of Adsorbed Xe.- 13.2.2 The D ?-Model.- 13.2.3 Further Experimental Evidence for the D ?-Model.- 13.2.4 The "Local Work Function" Concept.- 13.2.5 Methodological Aspects.- 13.3 Selected Case Studies of Metallic Surfaces.- 13.3.1 Surface Steps: Vicinal Surfaces.- 13.3.2 Metallic Ruthenium Powder.- 13.3.3 Initial Stages of Film Growth: Bimetallic Surfaces.- 13.3.4 Bimetallic Cu/Ru Powder Catalyst.- 13.3.5 Thermal Stability of Metal/Metal Interfaces.- 13.4 Summary and Implications.- References.- 14. Theoretical Aspects of Scanning Tunneling Microscopy.- 14.1 General Tunneling Theory.- 14.1.1 Non-perturbative Treatment.- 14.1.2 Tunneling-Hamiltonian Treatment.- 14.1.3 Modeling the Tip.- 14.2 STM Images and their Interpretation.- 14.2.1 Modes of Imaging.- 14.2.2 Imaging of Metals.- 14.2.3 Imaging of Semiconductors.- 14.2.4 Imaging Band-Edge States.- 14.3 Spectroscopy.- 14.3.1 Qualitative Theory.- 14.3.2 Quantitative Theory.- 14.4 Mechanical Interactions Between Tip and Sample.- 14.5 Conclusion.- References.- 15. Proximal Probes: Techniques for Measuring at the Nanometer Scale.- 15.1 Proximal Probes.- 15.1.1 Tunneling.- 15.1.2 Field Emission.- 15.1.3 Force.- 15.1.4 Near-Field.- 15.2 Nanoscale Fabrication Using Proximal Probes.- 15.3 Conclusion.- References.- 16. Studying Surface Chemistry Atom-by-Atom Using the Scanning Tunneling Microscope.- 16.1 Topography and Spectroscopy with the STM.- 16.2 Imaging Semiconductor Surface Chemistry Atom-by-Atom Using the STM.- 16.3 The Structure of the Si{111}-7 x 7 Surface.- 16.4 Site-Selective Reactions of Si{111}-7 x 7.- 16.5 Molecular Adsorption on Si{111}-7 x 7.- 16.6 Reactions That Involve Extensive Atomic Rearrangements.- 16.7 Doping Effects on Silicon Surface Chemistry.- 16.8 Conclusions and Prospects for the Future.- References.- 17. Bonding and Structure on Semiconductor Surfaces.- 17.1 Basic Mechanism Driving Surface Reconstruction.- 17.2 The Geometric and Electronic Structures of GaAs{110}.- 17.3 The GaAs{111}(2 x 2) Surface Reconstruction.- 17.4 Structure of the Si{111}7 x 7 Surface.- 17.5 The Ge{111} c(2 x 8) Reconstruction.- 17.6 Summary.- References.- 18. Tribology at the Atomic Scale.- 18.1 Concepts in Classical Tribology.- 18.2 Experimental Approaches.- 18.2.1 Surface Force Apparatus.- 18.2.2 Single Asperity Techniques.- 18.3 Theoretical Descriptions of Tribology.- 18.3.1 Simplified Model of Wearless Friction.- 18.3.2 Molecular Dynamics Studies of Shearing Solids.- 18.3.3 Molecular Dynamics Studies of Thin Fluid Flow.- 18.4 Summary and Future Directions.- References.- of Chemistry and Physics of Solid Surfaces IV (Springer Series in Chemical Physics, Vol. 20).- of Chemistry and Physics of Solid Surfaces V (Springer Series in Chemical Physics, Vol.
Text of Note
35).- of Chemistry and Physics of Solid Surfaces VI (Springer Series in Surface Sciences, Vol.
Text of Note
5).- of Chemistry and Physics of Solid Surfaces VII (Springer Series in Surface Sciences, Vol. 10).
SUMMARY OR ABSTRACT
Text of Note
The series Chemistry and Physics of Solid Surfaces presents selected review articles predominantly from the area of gas/solid interfaces. These articles are written by internationally recognized experts, the invited speakers of the International Summer Institute in Surface Science (ISISS). Volume VIII covers the following topics: Surface reactivity - activation and desorption of molecules; desorption induced by electronic transitions; intra-adsorbate bond breaking, and the effect of high electric fields; metal clusters and atoms in zeolites; chaos in surface dynamics; surface characterization by STM (theory and application), LEEM, PAX, TOF-SARCH, SEMN with polarization analysis, and by low energy positron diffraction. The purpose of this series is to bring researchers in academia and industry up to date and to bridge the gap between conventional surface science textbooks and specialized conference proceedings. Extensive literature references are provided together with a detailed subject index.