1. Electron-Atom Scattering Theory: An Overview --; Abstract --; 1.1 Introduction --; 1.2 Potential Scattering --; 1.3 Perturbation Approaches --; 1.4 The Close-Coupling Expansion --; 1.5 Computer Program for Potential Scattering --; 1.6 Summary --; 1.7 Suggested Problems --; Acknowledgments --; References --; 2. Core Potentials for Quasi One-Electron Systems --; Abstract --; 2.1 Introduction --; 2.2 Theory --; 2.3 The Algorithm --; 2.4 Computer Program --; 2.5 Test Run --; 2.6 Summary --; 2.7 Suggested Problems --; Acknowledgments --; References --; 3. Energies and Oscillator Strengths Using Configuration Interaction Wave Functions --; Abstract --; 3.1 Introduction --; 3.2 Hydrogen-Like Ions --; 3.3 Two-Electron Atoms and Ions --; 3.4 Many-Electron Atoms and Ions --; 3.5 Configuration Interaction Methods --; 3.6 Transition Probabilities and Oscillator Strengths --; 3.7 The Codes --; 3.8 Examples --; 3.9 Summary --; 3.10 Suggested Problems --; References --; 4. The Distorted-Wave Method for Elastic Scattering and Atomic Excitation --; Abstract --; 4.1 Introduction --; 4.2 Theory --; 4.3 First-Order Amplitudes --; 4.4 Partial-Wave Expansion of the T Matrix --; 4.5 Computer Program --; 4.6 Summary --; 4.7 Suggested Problems --; Acknowledgments --; References --; 5. Distorted-Wave Methods for Ionization --; Abstract --; 5.1 Introduction --; 5.2 Theory --; 5.3 Reduction of the (e,2e) Amplitudes to Computational Form --; 5.4 Computer Program --; 5.5 Summary --; 5.6 Suggested Problems --; Acknowledgments --; References --; 6. The Close-Coupling Approximation --; Abstract --; 6.1 Introduction --; 6.2 Theory --; 6.3 The Numerical Solution of the Close-Coupling Equations --; 6.4 The Born Approximation --; 6.5 Computer Program --; 6.6 Summary --; 6.7 Suggested Problems --; Acknowledgments --; References --; 7. The R-Matrix Method --; Abstract --; 7.1 Introduction --; 7.2 General R-Matrix Theory --; 7.3 Electron-Hydrogen-like Ion Scattering --; 7.4 Computational Solution of the Electron-Hydrogen-Like Ion-Collision Problem --; 7.5 Computer Program --; 7.6 Summary --; 7.7 Suggested Problems --; Acknowledgments --; References --; 8. Momentum-Space Convergent-Close-Coupling Method for a Model e-H Scattering Problem --; Abstract --; 8.1 Introduction --; 8.2 Theory --; 8.3 Numerical Solution --; 8.4 Computer Program --; 8.5 Summary --; 8.6 Suggested Problems --; References --; 9. The Calculation of Spherical Bessel and Coulomb Functions --; Abstract --; 9.1 Introduction --; 9.2 Spherical Bessel Functions --; 9.3 Recurrence Relations for Spherical Bessel Functions --; 9.4 Evaluation of the Continued Fraction --; 9.5 The Programs SBESJY and RICBES --; 9.6 Recurrence Relations for Coulomb Functions --; 9.7 The Program C0UL90 --; 9.8 Test Data --; 9.9 Summary --; 9.10 Suggested Problems --; Acknowledgments --; References --; 10. Scattering Amplitudes for Electron-Atom Scattering --; Abstract --; 10.1 Introduction --; 10.2 Definition of the Scattering Amplitudes --; 10.3 Convergence of Partial Wave Expansions --; 10.4 Symmetry Properties of Scattering Amplitudes --; 10.5 Computer Program --; 10.6 Summary --; 10.7 Suggested Problems --; Acknowledgments --; References --; 11. Density Matrices: Connection Between Theory and Experiment --; Abstract --; 11.1 Introduction --; 11.2 Scattering Amplitudes --; 11.3 Density Matrices --; 11.4 Irreducible Tensor Operators and State Multipoles --; 11.5 Observables --; 11.6 2S? 2P° Transitions --; 11.7 Computer Program --; 11.8 Summary --; 11.9 Suggested Problems --; Acknowledgments --; References.
SUMMARY OR ABSTRACT
Text of Note
Computational Atomic Physics deals with computational methods for calculating electron (and positron) scattering from atoms and ions, including elastic scattering, excitation, and ionization processes. After an introductory chapter on atomic collision theory, two chapters are devoted to the bound-state wavefunctions. A description of perturbative methods is followed by discussions of the standard non-perturbative close-coupling theory, the R-matrix method, and the recently developed "convergent-close-coupling" approach. The details of calculating accurate Coulomb and Bessel functions are treated as well. Finally, the calculation of scattering amplitudes is discussed and an introduction to the density-matrix theory is given. The book provides a practical application of advanced quantum mechanics. The abstract equations of general scattering theory are reduced to numerically solvable differential and integral equations, and computer codes for the solution are provided. Numerous suggested problems in the text and ten programs on a diskette contribute to a deeper understanding of the field. The diskette The 10 program packages included on a 3 1/2" MS-DOS diskette are written in standard FORTRAN 77 and run on any computer that fulfills the following system requirements: 16MB RAM, MS-DOS 3.30 or higher; 486 DX processor with numerical coprocessor. The FORTRAN 77 source files allow for modification of the programs; therefore a FORTRAN 77 compiler is also needed. Example input and output files are provided for the text cases. * COREPOT core potentials * CIV3 atomic structure * DWBA first order distorted wave program for excitation * DWBIA first order distorted wave program for ionization * CCPA close-coupling for positron-atom scattering * RMATREX R-matrix program for electron-atom scattering * CCC convergent close-coupling * COUL90 Coulomb and Bessel functions.