Part I: introduction to polarized light. Introduction ; Polarization in the natural environment ; Wave equation in classical optics ; The polarization ellipse ; Stokes polarization parameters ; Mueller matrices for polarizing components ; Fresnel equations: derivation and Mueller matrix formulation ; Mathematics of the Mueller matrix ; Mueller matrices for dielectric plates ; The Jones matrix formalism ; The Poincare sphere ; Fresnel-Arago interference laws --; Part II: Polarimetry. Introduction ; Methods of measuring Stokes polarization parameters ; Measurement of the characteristics of polarizing elements ; Stokes polarimetry ; Mueller matrix polarimetry ; Techniques in imaging polarimetry ; Channeled polarimetry for snapshot measurements --; Part III: Applications. Introduction ; Crystal optics ; Optics of metals ; Polarization optical elements ; Ellipsometry ; Form birefringence and meanderline retarders --; Part IV: Classical and quantum theory of radiation by accelerating charges. Introduction to classical and quantum theory of radiation by accelerating charges ; Maxwell's equations for electromagnetic fields ; The classical radiation field ; Radiation emitted by accelerating charges ; Radiation of an accelerating charge in the electromagnetic field ; The classical Zeeman effect ; Further applications of the classical radiation theory ; The Stokes parameters and Mueller matrices for optical activity and Faraday rotation ; Stokes parameters for quantum systems.