Über nichtlineare Differentialgleichungen 2. Ordnung, die für eine Abschätzungsmethode bei partiellen Differentialgleichungen vom elliptischen Typus besonders wichtig sind
General Material Designation
[Book]
First Statement of Responsibility
von Ernst Peschl, Karl Wilhelm Bauer.
.PUBLICATION, DISTRIBUTION, ETC
Place of Publication, Distribution, etc.
Wiesbaden
Name of Publisher, Distributor, etc.
VS Verlag für Sozialwissenschaften
Date of Publication, Distribution, etc.
1964
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
68 Seiten
SERIES
Series Title
Forschungsberichte des Landes Nordrhein-Westfalen, 1374
GENERAL NOTES
Text of Note
Bei den im folgenden behandelten Differentialgleichungen, deren Bedeutung in Kapitel I näher dargelegt wird, gelingt es weitgehend, die Lösungen in ge schlossener Form zu ermitteln. Dennoch ist es im Hinblick auf eine allgemeine Übersicht und bezüglich des Verlaufs von Einzelkurven von großem Interesse, eine möglichst genaue graphische Darstellung anzufertigen. Aus diesem Grunde haben wir in Kapitel VI, 2 b eine Reihe von Abbildungen in die vorliegende Arbeit aufgenommen, die mit Hilfe der Integrieranlage des Rheinisch-West fälischen Institutes für Instrumentelle Mathematik in Bonn hergestellt worden sind. Die hierzu nötige Zubereitung des Problems, die Programmierung und instrumentelle Ausführung hat Herr Dr. PAUL FRIEDRICH MÜLLER, Bonn, über nommen, wofür wir ihm an dieser Stelle besonders herzlich danken möchten. Herr Dr. MÜLLER hat die dabei angewandten Verfahren in einer Vorbemerkung, die den Kurvenbildern vorausgeht (siehe Kapitel VI, 2a), kurz dargestellt. Bonn, den 15. August 1963 ERNST PESCHL, KARL WILHELM BAUER 7 I. Über die Bedeutung der vorliegenden Differentialgleichung Im folgenden wird die Lösung der nichtlinearen Differentialgleichung 2. Ord nung (f=f(oc" ff"--_n _f'2 + 2n+ 1 Li' _ eR + 2 L')f -~=O (1) 2n - 1 2n - 1 n 2n - 1 bei vorgegebenem L (oc) =co +ClOC, Co, Cl beliebig konstant, behandelt. Dabei ist R eine negative Konstante, während n positive halb- bzw. ganzzahlige Werte annimmt.