Preface --;How to use this book --;Chapter 1: Basics --;1-0: Introductory remarks --;1-1: Number systems --;1-2: Coordinates in one dimension --;1-3: Coordinates in two dimensions --;1-4: Slope of a line in the plane --;1-5: Equation of a line --;1-6: Loci in the plane --;1-7: Trigonometry --;1-8: Sets and functions --;1-8-1: Examples of functions of a real variable --;1-8-2: Graphs of functions --;1-8-3: Plotting the graph of a function --;1-8-4: Composition of functions --;1-8-5: Inverse of a function --;1-9: Few words about logarithms and exponentials --;Quiz --;Chapter 2: Foundations Of Calculus --;2-1: Limits --;2-1-1: One-sided limits --;2-2: Properties of limits --;2-3: Continuity --;2-4: Derivative --;2-5: Rules for calculating derivatives --;2-5-1: Derivative of an inverse --;2-6: Derivative as a rate of change --;Quiz --;Chapter 3: Applications Of The Derivative --;3-1: Graphing of functions --;3-2: Maximum/minimum problems --;3-3: Related rates --;3-4: Falling bodies --;Quiz --;Chapter 4: Integral --;4-0: Introduction --;4-1: Antiderivatives and indefinite integrals --;4-1-1: Concept of antiderivative --;4-1-2: Indefinite integral --;4-2: Area --;4-3: Signed area --;4-4: Area between two curves --;4-5: Rules of integration --;4-5-1: Linear properties --;4-5-2: Additivity --;Quiz --;Chapter 5: Indeterminate Forms --;5-1: I'Hopital's Rule --;5-1-1: Introduction --;5-1-2: I'Hopital's Rule --;5-2: Other indeterminate forms --;5-2-1: Introduction --;5-2-2: Writing a product as a quotient --;5-2-3: Use of the logarithm --;5-2-4: Putting terms over a common denominator --;5-2-5: Other algebraic manipulations --;5-3: Improper integrals: a first look --;5-3-1: Introduction --;5-3-2: Integrals with infinite integrands --;5-3-3: Application to area --;5-4: More on improper integrals --;5-4-1: Introduction --;5-4-2: Integral on an infinite interval --;5-4-3: Some applications --;Quiz --;Chapter 6: Transcendental Functions --;6-0: Introductory remarks --;6-1: Logarithm basics --;6-1-1: New approach to logarithms --;6-1-2: Logarithm function and the derivative --;6-2: Exponential basics --;6-2-1: Facts about the exponential function --;6-2-2: Calculus properties of the exponential --;6-2-3: Number e --;6-3: Exponentials with arbitrary bases --;6-3-1: Arbitrary powers --;6-3-2: Logarithms with arbitrary bases --;6-4: Calculus with logs and exponentials to arbitrary bases --;6-4-1: Differentiation and integration of log(a)x and a(x) --;6-4-2: Graphing of logarithmic and exponential functions --;6-4-3: Logarithmic differentiation --;6-5: Exponential growth and decay --;6-5-1: Differential equation --;6-5-2: Bacterial growth --;6-5-3: Radioactive decay --;6-5-4: Compound interest --;6-6: Inverse trigonometric functions --;6-6-1: Introductory remarks --;6-6-2: Inverse sine and cosine --;6-6-3: Inverse tangent function --;6-6-4: Integrals in which inverse trigonometric functions arise --;6-6-5: Other inverse trigonometric functions --;6-6-6: Example involving inverse trigonometric functions --;Quiz --;Chapter 7: Methods Of Integration --;7-1: Integration by parts --;7-2: Partial fractions --;7-2-1: Introductory remarks --;7-2-2: Products of linear factors --;7-2-3: Quadratic factors --;7-3: Substitution --;7-4: Integrals of trigonometric expressions --;Quiz --;Chapter 8: Applications Of The Integral --;8-1: Volumes by slicing --;8-1-0: Introduction --;8-1-1: Basic strategy --;8-1-2: Examples --;8-2: Volumes of solids of revolution --;8-2-0: Introduction --;8-2-1: Method of washers --;8-2-2: Method of cylindrical shells --;8-2-3: Different axes --;8-3: Work --;8-4: Averages --;8-5: Arc length and surface area --;8-5-1: Arc length --;8-5-2: Surface area --;8-6: Hydrostatic pressure --;8-7: Numerical methods of integration --;8-7-1: Trapezoid rule --;8-7-2: Simpson's rule --;Quiz --;Final exam --;Answers to quizzes and final exam --;Bibliography --;Index.
SUMMARY OR ABSTRACT
Text of Note
Hard stuff made easy! Your practical, self-paced guide to calculus.