1. The Evolution of Influenza Viral Genetics - A Perspective.- I. Introduction.- II. The Development of Modern Influenza Viral Genetics.- A. Early Evidence of Genetic Variation in the Laboratory.- B. AppHcation of Formal Genetic Techniques to Studies of Influenza Virus.- C. Genetic Markers.- D. Development of Plaquing Systems.- E. The Use of Conditional Lethal Mutants.- F. New Approaches in Influenza Virus Genetics.- 1. The Biochemical Identification of Viral Gene Products in the Unambiguous Definition of Viral Inheritance.- 2. Mapping of the Influenza Virus Genome by Correlative Physico-Chemical and Biological Techniques.- 3. The Application of Molecular Biological Techniques to the Study of Viral Genetic Variation.- 4. Oligonucleotide Mapping of Viral RNA's.- 5. Contribution of Protein and RNA Sequencing to Influenza Viral Genetics-Intragenic Mapping.- III. Viral Genetics and the Understanding of Viral Virulence and Pathogenicity.- IV. Influenza Virus Genetics and the Epidemiology and Evolution of Influenza Viruses (Molecular Epidemiology).- A. Genetic Reassortment in Nature and Its Contribution to the Evolution of New Viruses.- B. The Genetics of Minor Variation.- C. Influenza A, B, and C Viruses.- V. Practical Applications of Influenza Viral Genetics.- VI. The Special Genetics of Divided Genome Viruses in Relation to Problems in Influenza.- VII. Unsolved Problems in Influenza and Genetic Approaches to Their Solution.- References.- 2. The Influenza Virus RNA Segments and Their Encoded Proteins.- I. Introduction.- II. The Influenza Virus Particle: Basic Structure.- III. Structure of the Genome.- A. Early Evidence for a Segmented Genome.- B. The 8 Segments of Influenza Virus RNA.- C. Methods for Assigning Gene Functions.- D. Sequences at the 5' and 3' Ends of Each RNA Segment Are Common.- E. Synthesis of Double-Stranded DNA from Influenza Vims RNA, Cloning and Nucleotide Sequencing.- IV. The Influenza Vims RNA Segments.- A. RNA Segments 1, 2, and 3: Properties of the Transcriptase Associated Proteins PBl, PB2, and PA.- B. RNA Segment 4: Stmcture and Function of the Hemagglutinin.- 1. The Stmcture of RNA Segment 4 Coding for the Hemagglutinin.- 2. The Three-Dimensional Stmcture of the Hemagglutinin.- 3. Synthesis of the Hemagglutinin, Cotranslational and Post- Translational Modifications.- 4. Cleavage Activation of Infectivity and in Vitro Fusion.- C. RNA Segment 5: The Stmcture of the Nucleocapsid Protein (NP).- D. RNA Segment 6: The Structure and Properties of the Neuraminidase.- E. RNA Segment 7: The Stmcture and Synthesis of the Membrane Protein (Mj) and Non-Structural Protein (M2).- F. RNA Segment 8: The Stmcture and Synthesis of Nonstmctural Proteins NSj and NS2.- G. Overlapping Coding Regions Using Different Reading Frames in Vimses.- Acknowledgements.- Appendix: The Influenza Vims Nucleotide Sequence (A/PR/8/34 Strain).- References.- 3. Transcription and Replication of Influenza Viruses.- I. Introduction.- II Viral mRNA Synthesis.- A. Priming by Cellular Capped RNAs-Discovery.- B. Priming by Cellular Capped RNAs-Mechanism.- C. Role of the Three Viral P Proteins in the Steps of Primed Transcription.- D. Termination of Transcription and Poly (A) Addition.- E. Regulation of Viral mRNA Synthesis in the Infected Cell.- F. Cellular Site of Viral mRNA Synthesis.- G. Role of Other Host Nuclear Functions in Viral mRNA Synthesis-Splicing and Methylation of Internal A Residues.- III. Synthesis of Full-Length Transcripts.- IV. Synthesis of vRNA (Replication).- References.- 4. Genetic Relatedness of Influenza Viruses (RNA and Protein).- I. Introduction.- II Genetic Relatedness of Viral RNAs.- A. Differences in Migration Rates of the RNA Segments As Revealed by Polyacrylamide Gel Electrophoresis (PAGE).- B. Molecular Hybridization.- 1. Direct RNA-RNA Hybridization.- 2. Competitive Hybridization.- 3. DNA-RNA Hybridization.- 4. Analysis of Double-Stranded Nuclease Si-Treated Hybrid Molecules by Polyacrylamide Gel Electrophoresis.- C. Oligonucleotide Fingerprints.- D. Sequencing of RNA Segments.- 1. Sequencing of 32P-End Labeled RNAs by Partial Nuclease Digestion.- 2. Sequencing of the 3' End of RNAs Using the Dideoxy Method.- 3. Sequencing of Total RNA Segments.- a) Hemagglutinin Gene.- b) Neuraminidase Gene.- c) The Three P-Protein Genes.- d) The Nucleoprotein Gene.- e) The Membrane Protein Gene.- f) The Nonstructural Protein Gene.- III. Genetic Relatedness of Viral Proteins.- A. Differences in Migration Rates of Viral Proteins As Revealed by Polyacrylamide Gel Electrophoresis.- B. Tryptic Peptide Mapping.- C. Direct Sequencing.- IV. Concluding Remarks.- Acknowledgements.- References.- 5. Antigenic Variation Among Type A Influenza Viruses.- I. Introduction.- II. Historical.- III. Nomenclature.- IV. Chemical and Physical Properties of the Antigens.- V. The Hemagglutinin (HA).- A. Isolation and Antigenic Properties of HA.- B. Changes in Conformation and Antigenicity of the HA at Low pH.- C. Antigenic Drift in the HA.- D. Use of Monoclonal Antibodies in the Analysis of Antigenic Drift.- E. Sequence Change in the HA of Influenza Virus Variants Selected with Monoclonal Antibodies.- F. Location of the Antigenic Sites in the 3-D Stmcture of the HA.- G. Sequential Selection of Antigenic Variants.- H. Antigenic Drift in the HA of Influenza A Virus from Lower Animals.- VI. The Neuraminidase (NA).- A. Antigenic Variation in the Neuraminidase.- B. Selection of NA Variants with Monoclonal Antibodies.- C. Antigenic Drift in the Neuraminidases of Influenza A Viruses from Lower Animals.- D. Mechanism of Antigenic Drift.- VII. Antigenic Shift.- A. Evidence from Sequence Data.- B. Possible Mechanisms of Shifts in Human Strains.- C. Antigenic Shift in Influenza Viruses from Lower Animals.- VIII. Variation in the Nucleoprotein.- IX. Variation in the Matrix Protein.- X. Variation in the Nonstmctural Proteins.- XI. Variation in the Polymerase Proteins.- XII What of the Future?.- Acknowledgements.- References.- 6. Expression of Cloned Influenza Vims Genes.- I. Introduction.- II. Expression Vectors.- III. Expression of Influenza Virus Genes in E. coli.- A. Expression of HA.- B. Expression of NSl Protein.- IV. Expression of Influenza Vims Genes in Eukaryotic Cells.- A. Expression of HA in Simian Cells Using Recombinant SV40 Viral Vectors.- B. Preparation of the HA Genes.- C. Construction of Recombinant Genomes.- D. Introduction of Recombinant Genomes into Simian Cells and Production of Virus Stocks.- E. Analysis of the HA Expressed from the SV40-HA Recombinant Vectors.- F. Quantitation of the Amounts of HA Expressed from the Recombinant Genomes.- G. Effect of Intervening Sequences in the Recombinant HA Transcript on the Level of Expression of HA Protein.- H. Expression of the Matrix Gene in Simian Cells Using an SV40-M Recombinant Virus.- I. Transient Expression of Cloned Genes in COS-1 Cells.- J. Continuous Expression of HA from Genes Integrated into the Chromosomes of Eukaryotic Cells.- V. Analysis of the Expression of Mutant HA Proteins.- A. The Signal-Minus HA Is a Non-Glycosylated, Intracellular Protein.- B. Removal of the C-Terminal Hydrophobic Sequence Converts HA into a Secreted Protein.- C. Future Prospects.- References.- 7. Mutants of Influenza Virus.- I. Introduction.- II. Characterization of Vims Mutants.- A. Influenza Vims-Cell Systems.- B. Nature of the Vims Population.- C. Natural Mutation Rate.- D. Induction of Mutants.- 1. Mutagens.- E. Leak and Reversion.- III. Temperature-Sensitive Mutants.- A. Genetic Interaction and Classification of Mutants.- B. Assignment of ts Lesions to Individual Genome Segments.- 1. Cambridge Mutants.- 2. New York-Tokyo Mutants.- 3. Giessen Mutants.- 4. Moscow Mutants.- 5. Bethesda Mutants.- 6. Summary.- C. Phenotypic Analysis of Temperature Sensitive Mutants.- 1. Assigment of Polypeptides to RNA Segments.- 2.
Text of Note
Mutants with ts Lesions in RNA Segment 1.- a) Virion RNA Transcriptase Activity.- b) RNA-Dependent RNA Polymerase Activity of Infected Cell Extracts.- c) Virus-Specific RNA Synthesis in vivo.- d) Virus-Specific Polypeptide Synthesis.- e) Summary.- 3. Mutants with ts Lesions in RNA Segment 2.- a) Virion Transcriptase Activity.- b) RNA-Dependent RNA Polymerase Activity of Infected Cell Extracts.- c) Virus-Specific RNA Synthesis in vivo.- d) Virus-Specific Polypeptide Synthesis.- e) Summary.- 4. Mutants with ts Lesions in RNA Segment 3.- a) Virion Transcriptase Activity.- b) RNA-Dependent RNA Polymerase Activity of Infected Cell Extracts.- c) Virus-Specific RNA Synthesis in vivo.- d) Virus-Specific Polypeptide Synthesis.- e) Summary.- 5. Mutants with ts Lesions in RNA Segment 4.- 6. Mutants with ts Lesions in the RNA Segments Encoding the Nucleoprotein.- a) RNA Transcriptase Activity.- b) Virus-Specific RNA Synthesis in vivo.- c) Vims-Specific Polypeptide Synthesis.- d) Summary.- 7. Mutants with ts Lesions in the RNA Segment Encoding the Neuraminidase.- 8. Mutants with ts Lesions in RNA Segment 7.- 9. Mutants with ts Lesions in RNA Segment 8.- D. Temperature-Sensitive Mutant-Derived Vaccines.- IV. Cold-Adapted Mutants.- V. Host Range Mutants.- A. Non-Conditional Host Range Mutants.- B. Conditional Host Range Mutants.- C. Conclusions.- VI. Amantadine-Resistant Mutants.- VII. General Conclusions.- Acknowledgements.- References.- 8. The Stmcture of Influenza Virus Defective Interfering (DI) RNAs and Their Progenitor Genes.- I. Introduction.- II. Properties of Influenza DI Particles.- III. RNA of Influenza Vims DI Particles.- IV. Stmcture of Polymerase Genes and Polymerase Proteins.- A. Nucleotide Sequence of Polymerase Genes.- B. Primary Stmcture of PBl and PB2 Proteins.- C. Predicted Secondary Stmctures of PBl and PB2 Proteins.- V. Stmcture of DI RNAs.- A. Classes of DI RNAs.- B. Complete Nucleotide Sequences of DI RNAs.- VI. Generation of DI RNAs from the Progenitor RNAs.- VII. Transcription of Influenza Vims DI Vimses.- VIII. Interference by Influenza DI Viruses.- IX. Conclusion.- Acknowledgement.- References.- 9. Influenza B and Influenza C Viruses.- I. Introduction.- II. Influenza B Vims.- A. Influenza B RNA Species.- B. Influenza B Proteins.- 1. Hemagglutinin.- 2. Neuraminidase.- 3. Matrix Protein.- 4. The Non-Stmctural Proteins.- 5. The P Proteins.- C. Replication of Influenza B Vims.- D. Epidemiology.- E. Antigenic Variation in Influenza B Vimses.- III. Influenza C Vims.- A. Vims Stmcture.- 1. Morphology of Virions.- 2. Viral RNA Species.- 3. Viral Polypeptides.- 4. Fusion and Hemolysis Activities.- 5. Receptor Destroying Enzyme.- B. Influenza C Virus Replication.- C. Genetics and Epidemiology.- Acknowledgements.- References.- 10. Virus-Determined Differences in the Pathogenesis of Influenza Virus Infections.- I. Introduction.- II. Methods.- III. Hemagglutinin-Related Differences in Biologic Properties.- IV. Virulence in Chickens.- V. Neurovirulence in Mice.- VI. Virulence in Other Experimental Animals.- A. Ferrets.- B. Rats.- C. Mice.- VII Vims-Determined Differences in Other Systems.- A. Cell Culture.- B. Yield in Embryonated Eggs.- C. Sensitivity to Amantadine.- VIII. Virulence in Man.- IX. Summary.- References.- 11. Molecular Epidemiology of Influenza Virus.- I. Introduction.- II. Influenza A, B, and C Viruses and Associated Diseases.- III. Influenza in the 20th Century.- IV. Surveillance of Influenza Vimses.- V. The 1977 H1N1 Vimses.- VI. Molecular Epidemiology of Influenza in Animals.- VII. Mechanisms Contributing to Variation in Influenza Virus Field Strains.- A. Point Mutations.- B. Recombination (Reassortment).- C. Deletions/Insertions.- D. Recycling of Genes.- VIII. Outiook for the Future.- References.