1 The Cellular Basis of Memory.- 1.1 Nerve Cells (Neurons).- 1.1.1 Neuron Theory.- 1.1.2 Morphology of Nerve Cells.- 1.1.3 Fine Structure of Nerve Cells.- 1.2 Glial Cells and Nerve Sheaths.- 1.2.1 Macro- or Astroglia.- 1.2.2 Oligodendroglia.- 1.2.3 Meso- or Microglia.- 1.2.4 Neural Sheaths.- 2 Development of the Nervous System in Vertebrates.- 2.1 Morphogenetic Aspects of the Formation of Neuronal Structure.- 2.1.1 Induction of Neural Plate and Neural Crest.- 2.1.2 Multiplication of Nerve Cells.- 2.1.3 Migration of Nerve Cells.- 2.1.4 Formation of Identifiable Groups.- 2.1.5 Differentiation of Nerve Cells.- 2.1.6 Elimination of Surplus Matter.- 2.2 Cellular and Molecular Aspects of Neuronal Differentiation.- 2.2.1 Nerve Fiber Growth Through Neurobiotaxis.- 2.2.2 Nerve Fiber Growth Through Galvanotropism.- 2.2.3 Nerve Fiber Growth Through Chemoaffinity.- 3 Functional Morphology of the Nervous System in Vertebrates.- 3.1 Basic Structure of the Nervous System in Vertebrates.- 3.2 The Central Nervous System.- 3.2.1 Phylogenetic Aspects.- 3.2.2 Comparative Overview of the Functional Morphology of the Major Sections of the Human CNS.- 3.3 Vegetative Nervous System (Sympathetic and Parasympathetic).- 3.4 Derivatives of the Placodes.- 3.5 Nonneuronal Structures in the Nervous System.- 3.5.1 Neuronal Sheaths.- 3.5.2 Ependyma and Circumventricular Organs.- 3.5.3 Meninges.- 3.5.4 Blood Vessel Networks (Plexus Choroideus).- 3.5.5 Cerebrospinal Fluid.- 4 Evolution and Architecture of the Nervous System in Invertebrates.- 4.1 Evolution of Nerve Cells: General Remarks.- 4.2 Organization of the Nervous System in Invertebrates.- 5 Principles of Circuitry in Neurobiological Information Processing.- 5.1 Neuronal Circuitry.- 5.2 Reflex Circuitry.- 5.3 Examples of Central Nervous Circuitry Systems.- 5.3.1 Retina.- 5.3.2 Cerebellum.- 5.3.3 Hippocampus.- 5.3.4 Neocortex.- 5.4 Outlook.- 6 Electrophysiological Aspects of Information Processing.- 6.1 Resting Potential of Membranes.- 6.1.1 General Remarks.- 6.1.2 K+-Ion Equilibrium Potential as Evidenced in Glial Cells.- 6.1.3 Ion Equilibrium Potential for K+ and Na+.- 6.1.4 The Significance of Cl- for the Resting Potential.- 6.1.5 Quantifying Membrane Potential: The Goldman Equation.- 6.1.6 Membrane Properties and Voltage-Dependent Ion Channels.- 6.2 Action Potential.- 6.2.1 Action Potential Defined.- 6.2.2 Membrane Currents and Ion Shifts During Action Potential.- 6.2.3 Conducted Action Potential.- 6.2.4 Subthreshold Potentials.- 6.2.5 Impulse Generation and Conduction of the Action Potential Within the Nerve Cell.- 6.2.6 Impulse Conduction in Unmyelinated Fibers.- 6.2.7 Impulse Conduction in Myelinated Fibers (Myelinated Axons).- 6.3 Transmission of Impulses in the Synapses.- 6.3.1 General Aspects of Synaptic Impulse Transmission.- 6.3.2 Electrical Synapses.- 6.3.3 Chemical Synapses.- 6.3.4 Interneuronal Transmission.- 6.3.5 Plastic Electrical Response Behavior of Neurons.- 6.4 The Electroencephalogram (EEG) and Reaction Potential.- 6.4.1 The Electroencephalogram.- 6.4.2 Reaction Potential.- 7 Chemical Aspects of Neuronal Information Transmission in Synapses.- 7.1 Molecular Basis of Synaptic Information Transmission.- 7.1.1 Synaptic Membranes.- 7.1.2 Synaptic Vesicles.- 7.1.3 Synaptic Transmitter Substances (Neurotransmitters and Neuropeptides).- 7.2 Calcium and Neuronal Functions.- 8 Modulation of Neuronal Information Transmission.- 8.1 General Aspects of Neuromodulation.- 8.2 Significance of Gangliosides as Neuromodulators.- 8.2.1 Physiological Adaptive Capacity of Brain Gangliosides.- 8.2.2 Brain Gangliosides and Bioelectrical Activity of the Nervous System.- 8.2.3 Physicochemical Adaptive Capacity of Ca2+-Ganglioside Interactions for the Simulation of Membrane Events.- 8.2.4 Functional Model of the Neuromodulatory Effect of Ca2+ -Ganglioside Interactions in Synaptic Transmission.- 9 Neuronal Plasticity.- 9.1 Neuronal Transport.- 9.1.1 Slow Neuronal Transport.- 9.1.2 Rapid Neuronal Transport.- 9.1.3 Retrograde Transport.- 9.1.4 Transneuronal Transport.- 9.1.5 Transmembrane Transport.- 9.1.6 Significance of Neuronal Transport.- 9.2 Synaptic Plasticity.- 9.2.1 Selective Stabilization of Synapses as Mechanisms for the Specialized Formation of Neuronal Networks During Early Development.- 9.2.2 Function-Dependent Structural Formation of euronal Networks During Postnatal Development and in the Differentiated Nervous System.- 9.2.3 Synaptic Plasticity in the Electrical Response Behavior of Neurons.- 9.2.4 Structural and Biochemical Aspects of Synaptic Plasticity.- 9.3 Degeneration in the Nervous System.- 9.4 Regeneration in the Nervous System.- 10 Behavioral-Physiological Basis of Memory.- 10.1 Phenomenology of Memory.- 10.2 Innate Behavior.- 10.2.1 Taxes.- 10.2.2 Reflexes.- 10.2.3 Instincts.- 10.3 Acquired Behavior.- 10.3.1 Learning Processes.- 10.3.2 Creativity.- 10.3.3 Motivation and Emotion.- 10.3.4 Social Behavior.- 11 Neurobiological Models of Memory.- 11.1 Historical Overview: Early Models of Memory Formation.- 11.2 Memory Formation Through Molecular Facilitation in Synapses.- 11.2.1 The Aplysia Model of Memory.- 11.2.2 The Protein Kinase C Model.- 11.2.3 The Hypothesis of the Significance of Extracellular Proteins for Learning and Memory Formation.- 11.2.4 The Hippocampus Memory Model.- 11.2.5 A Brief Evaluation of Earlier Molecular Models of Memory.- 11.2.6 Memory Formation Through Molecular Facilitation in Synapses with Gangliosides.- 11.3 Aspects of the Formation of a Neuronal Information Processing System.- 11.4 Localizing Memory.